August  2011, 4(4): 809-823. doi: 10.3934/dcdss.2011.4.809

Positive solutions to a linearly perturbed critical growth biharmonic problem

1. 

Dipartimento di Matematica del Politecnico, Piazza L. da Vinci 32, Milano, 20133, Italy, Italy

Received  September 2009 Revised  December 2009 Published  November 2010

Existence and nonexistence results for positive solutions to a linearly perturbed critical growth biharmonic problem under Steklov boundary conditions, are determined. Furthermore, by investigating the critical dimensions for this problem, a Sobolev inequality with remainder terms, of both interior and boundary type, is deduced.
Citation: Elvise Berchio, Filippo Gazzola. Positive solutions to a linearly perturbed critical growth biharmonic problem. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 809-823. doi: 10.3934/dcdss.2011.4.809
References:
[1]

M. Abramowitz and I. Stegun, "Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables,", National Bureau of Standards Applied Mathematics Series, (1964).   Google Scholar

[2]

T. Bartsch, T. Weth and M. Willem, A Sobolev inequality with remainder term and critical equations on domains with topology for the polyharmonic operator,, Calc. Var. Partial Diff. Eq., 18 (2003), 253.  doi: doi:10.1007/s00526-003-0198-9.  Google Scholar

[3]

E. Berchio and F. Gazzola, Some remarks on biharmonic elliptic problems with positive, increasing and convex nonlinearities,, Electronic J. Diff. Eq., 34 (2005), 1.   Google Scholar

[4]

E. Berchio, F. Gazzola and E. Mitidieri, Positivity preserving property for a class of biharmonic elliptic problems,, J. Diff. Eq., 229 (2006), 1.  doi: doi:10.1016/j.jde.2006.04.003.  Google Scholar

[5]

E. Berchio, F. Gazzola and D. Pierotti, Nodal solutions to critical growth elliptic problems under Steklov boundary conditions,, Comm. Pure Appl. Anal., 8 (2009), 533.  doi: doi:10.3934/cpaa.2009.8.533.  Google Scholar

[6]

E. Berchio, F. Gazzola and T. Weth, Critical growth biharmonic elliptic problems under Steklov-type boundary conditions,, Adv. Diff. Eq., 12 (2007), 381.   Google Scholar

[7]

E. Berchio, F. Gazzola and T. Weth, Radial symmetry of positive solutions to nonlinear polyharmonic Dirichlet problems,, J. Reine Angew. Math., 620 (2008), 165.  doi: doi:10.1515/CRELLE.2008.052.  Google Scholar

[8]

F. Bernis, J. García Azorero and I. Peral, Existence and multiplicity of nontrivial solutions in semilinear critical problems of fourth order,, Adv. Diff. Eq., 1 (1996), 219.   Google Scholar

[9]

H. Brezis, "Analyse Fonctionnelle. Théorie et Applications,", Masson, (1983).   Google Scholar

[10]

F. Ebobisse and M. O. Ahmedou, On a nonlinear fourth-order elliptic equation involving the critical Sobolev exponent,, Nonlin. Anal. TMA, 52 (2003), 1535.  doi: doi:10.1016/S0362-546X(02)00273-0.  Google Scholar

[11]

D. E. Edmunds, D. Fortunato and E. Jannelli, Critical exponents, critical dimensions and the biharmonic operator,, Arch. Rat. Mech. Anal., 112 (1990), 269.  doi: doi:10.1007/BF00381236.  Google Scholar

[12]

F. Gazzola, Critical growth problems for polyharmonic operators,, Proc. Royal Soc. Edinburgh Sect. A, 128 (1998), 251.   Google Scholar

[13]

F. Gazzola and H.-Ch. Grunau, Radial entire solutions for supercritical biharmonic equations,, Math. Annalen, 334 (2006), 905.  doi: doi:10.1007/s00208-005-0748-x.  Google Scholar

[14]

F. Gazzola, H.-Ch. Grunau and M. Squassina, Existence and nonexistence results for critical growth biharmonic elliptic equations,, Calc. Var. Partial Differential Equations, 18 (2003), 117.  doi: doi:10.1007/s00526-002-0182-9.  Google Scholar

[15]

F. Gazzola, H.-Ch. Grunau and G. Sweers, Optimal Sobolev and Hardy-Rellich constants under Navier boundary conditions,, Ann. Mat. Pura Appl., 189 (2010), 475.  doi: doi:10.1007/s10231-009-0118-5.  Google Scholar

[16]

F. Gazzola, H.-Ch. Grunau and G. Sweers, "Polyharmonic Boundary Value Problems,", Springer, (2010).  doi: 10.1007/978-3-642-12245-3.  Google Scholar

[17]

F. Gazzola and D. Pierotti, Positive solutions to critical growth biharmonic elliptic problems under Steklov boundary conditions,, Nonlinear Analysis, 71 (2009), 232.  doi: doi:10.1016/j.na.2008.10.052.  Google Scholar

[18]

F. Gazzola and G. Sweers, On positivity for the biharmonic operator under Steklov boundary conditions,, Arch. Rat. Mech. Anal., 188 (2008), 399.  doi: doi:10.1007/s00205-007-0090-4.  Google Scholar

[19]

Y. Ge, Positive solutions in semilinear critical problems for polyharmonic operators,, J. Math. Pures Appl., 84 (2005), 199.  doi: doi:10.1016/j.matpur.2004.10.002.  Google Scholar

[20]

H.-Ch. Grunau, Critical exponents and multiple critical dimensions for polyharmonic operators II,, Boll. Unione Mat. Ital., 7 (1995), 815.   Google Scholar

[21]

H.-Ch. Grunau, Positive solutions to semilinear polyharmonic Dirichlet problems involving critical Sobolev exponents,, Calc. Var. Partial Diff. Eq., 3 (1995), 243.  doi: doi:10.1007/BF01205006.  Google Scholar

[22]

H.-Ch. Grunau, On a conjecture of P. Pucci and J. Serrin,, Analysis, 16 (1996), 399.   Google Scholar

[23]

E. Jannelli, The role played by space dimension in elliptic critical problems,, J. Diff. Eq, 156 (2000), 407.  doi: doi:10.1006/jdeq.1998.3589.  Google Scholar

[24]

E. Mitidieri, A Rellich type identity and applications,, Comm. Partial Diff. Eq., 18 (1993), 125.  doi: doi:10.1080/03605309308820923.  Google Scholar

[25]

E. Mitidieri, On the definition of critical dimension,, copy available from the author, (1993).   Google Scholar

[26]

P. Oswald, On a priori estimates for positive solutions of a semilinear biharmonic equation in a ball,, Comment. Math. Univ. Carolinae, 26 (1985), 565.   Google Scholar

[27]

S. J. Pohozaev, On the eigenfunctions of the equation $\Delta u+\lambda f(u)=0$,, Soviet Math. Doklady, 6 (1965), 1408.   Google Scholar

[28]

S. J. Pohozaev, The eigenfunctions of quasilinear elliptic problems,, Math. Sbornik, 82 (1970), 171.   Google Scholar

[29]

P. Pucci and J. Serrin, Critical exponents and critical dimensions for polyharmonic operators,, J. Math. Pures Appl., 69 (1990), 55.   Google Scholar

[30]

R. Soranzo, A priori estimates and existence of positive solutions of a superlinear polyharmonic equation,, Dyn. Syst. Appl., 3 (1994), 465.   Google Scholar

[31]

M. Struwe, "Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems,", Springer, (1990).   Google Scholar

[32]

C. A. Swanson, The best Sobolev constant,, Appl. Anal., 47 (1992), 227.  doi: doi:10.1080/00036819208840142.  Google Scholar

[33]

W. C. Troy, Symmetry properties in systems of semilinear elliptic equations,, J. Diff. Eq., 42 (1981), 400.  doi: doi:10.1016/0022-0396(81)90113-3.  Google Scholar

[34]

R. C. A. M. van der Vorst, Variational identities and applications to differential systems,, Arch. Rat. Mech. Anal., 116 (1991), 375.  doi: doi:10.1007/BF00375674.  Google Scholar

[35]

R. C. A. M. van der Vorst, Best constant for the embedding of the space $H^2\cap H_0^1(\Omega)$ into $L^{\frac{2N}{N-4}}(\Omega)$,, Diff. Int. Eq., 6 (1993), 259.   Google Scholar

[36]

R. C. A. M. van der Vorst, Fourth order elliptic equations with critical growth,, C. R. Acad. Sci. Paris S\'erie I, 320 (1995), 295.   Google Scholar

show all references

References:
[1]

M. Abramowitz and I. Stegun, "Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables,", National Bureau of Standards Applied Mathematics Series, (1964).   Google Scholar

[2]

T. Bartsch, T. Weth and M. Willem, A Sobolev inequality with remainder term and critical equations on domains with topology for the polyharmonic operator,, Calc. Var. Partial Diff. Eq., 18 (2003), 253.  doi: doi:10.1007/s00526-003-0198-9.  Google Scholar

[3]

E. Berchio and F. Gazzola, Some remarks on biharmonic elliptic problems with positive, increasing and convex nonlinearities,, Electronic J. Diff. Eq., 34 (2005), 1.   Google Scholar

[4]

E. Berchio, F. Gazzola and E. Mitidieri, Positivity preserving property for a class of biharmonic elliptic problems,, J. Diff. Eq., 229 (2006), 1.  doi: doi:10.1016/j.jde.2006.04.003.  Google Scholar

[5]

E. Berchio, F. Gazzola and D. Pierotti, Nodal solutions to critical growth elliptic problems under Steklov boundary conditions,, Comm. Pure Appl. Anal., 8 (2009), 533.  doi: doi:10.3934/cpaa.2009.8.533.  Google Scholar

[6]

E. Berchio, F. Gazzola and T. Weth, Critical growth biharmonic elliptic problems under Steklov-type boundary conditions,, Adv. Diff. Eq., 12 (2007), 381.   Google Scholar

[7]

E. Berchio, F. Gazzola and T. Weth, Radial symmetry of positive solutions to nonlinear polyharmonic Dirichlet problems,, J. Reine Angew. Math., 620 (2008), 165.  doi: doi:10.1515/CRELLE.2008.052.  Google Scholar

[8]

F. Bernis, J. García Azorero and I. Peral, Existence and multiplicity of nontrivial solutions in semilinear critical problems of fourth order,, Adv. Diff. Eq., 1 (1996), 219.   Google Scholar

[9]

H. Brezis, "Analyse Fonctionnelle. Théorie et Applications,", Masson, (1983).   Google Scholar

[10]

F. Ebobisse and M. O. Ahmedou, On a nonlinear fourth-order elliptic equation involving the critical Sobolev exponent,, Nonlin. Anal. TMA, 52 (2003), 1535.  doi: doi:10.1016/S0362-546X(02)00273-0.  Google Scholar

[11]

D. E. Edmunds, D. Fortunato and E. Jannelli, Critical exponents, critical dimensions and the biharmonic operator,, Arch. Rat. Mech. Anal., 112 (1990), 269.  doi: doi:10.1007/BF00381236.  Google Scholar

[12]

F. Gazzola, Critical growth problems for polyharmonic operators,, Proc. Royal Soc. Edinburgh Sect. A, 128 (1998), 251.   Google Scholar

[13]

F. Gazzola and H.-Ch. Grunau, Radial entire solutions for supercritical biharmonic equations,, Math. Annalen, 334 (2006), 905.  doi: doi:10.1007/s00208-005-0748-x.  Google Scholar

[14]

F. Gazzola, H.-Ch. Grunau and M. Squassina, Existence and nonexistence results for critical growth biharmonic elliptic equations,, Calc. Var. Partial Differential Equations, 18 (2003), 117.  doi: doi:10.1007/s00526-002-0182-9.  Google Scholar

[15]

F. Gazzola, H.-Ch. Grunau and G. Sweers, Optimal Sobolev and Hardy-Rellich constants under Navier boundary conditions,, Ann. Mat. Pura Appl., 189 (2010), 475.  doi: doi:10.1007/s10231-009-0118-5.  Google Scholar

[16]

F. Gazzola, H.-Ch. Grunau and G. Sweers, "Polyharmonic Boundary Value Problems,", Springer, (2010).  doi: 10.1007/978-3-642-12245-3.  Google Scholar

[17]

F. Gazzola and D. Pierotti, Positive solutions to critical growth biharmonic elliptic problems under Steklov boundary conditions,, Nonlinear Analysis, 71 (2009), 232.  doi: doi:10.1016/j.na.2008.10.052.  Google Scholar

[18]

F. Gazzola and G. Sweers, On positivity for the biharmonic operator under Steklov boundary conditions,, Arch. Rat. Mech. Anal., 188 (2008), 399.  doi: doi:10.1007/s00205-007-0090-4.  Google Scholar

[19]

Y. Ge, Positive solutions in semilinear critical problems for polyharmonic operators,, J. Math. Pures Appl., 84 (2005), 199.  doi: doi:10.1016/j.matpur.2004.10.002.  Google Scholar

[20]

H.-Ch. Grunau, Critical exponents and multiple critical dimensions for polyharmonic operators II,, Boll. Unione Mat. Ital., 7 (1995), 815.   Google Scholar

[21]

H.-Ch. Grunau, Positive solutions to semilinear polyharmonic Dirichlet problems involving critical Sobolev exponents,, Calc. Var. Partial Diff. Eq., 3 (1995), 243.  doi: doi:10.1007/BF01205006.  Google Scholar

[22]

H.-Ch. Grunau, On a conjecture of P. Pucci and J. Serrin,, Analysis, 16 (1996), 399.   Google Scholar

[23]

E. Jannelli, The role played by space dimension in elliptic critical problems,, J. Diff. Eq, 156 (2000), 407.  doi: doi:10.1006/jdeq.1998.3589.  Google Scholar

[24]

E. Mitidieri, A Rellich type identity and applications,, Comm. Partial Diff. Eq., 18 (1993), 125.  doi: doi:10.1080/03605309308820923.  Google Scholar

[25]

E. Mitidieri, On the definition of critical dimension,, copy available from the author, (1993).   Google Scholar

[26]

P. Oswald, On a priori estimates for positive solutions of a semilinear biharmonic equation in a ball,, Comment. Math. Univ. Carolinae, 26 (1985), 565.   Google Scholar

[27]

S. J. Pohozaev, On the eigenfunctions of the equation $\Delta u+\lambda f(u)=0$,, Soviet Math. Doklady, 6 (1965), 1408.   Google Scholar

[28]

S. J. Pohozaev, The eigenfunctions of quasilinear elliptic problems,, Math. Sbornik, 82 (1970), 171.   Google Scholar

[29]

P. Pucci and J. Serrin, Critical exponents and critical dimensions for polyharmonic operators,, J. Math. Pures Appl., 69 (1990), 55.   Google Scholar

[30]

R. Soranzo, A priori estimates and existence of positive solutions of a superlinear polyharmonic equation,, Dyn. Syst. Appl., 3 (1994), 465.   Google Scholar

[31]

M. Struwe, "Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems,", Springer, (1990).   Google Scholar

[32]

C. A. Swanson, The best Sobolev constant,, Appl. Anal., 47 (1992), 227.  doi: doi:10.1080/00036819208840142.  Google Scholar

[33]

W. C. Troy, Symmetry properties in systems of semilinear elliptic equations,, J. Diff. Eq., 42 (1981), 400.  doi: doi:10.1016/0022-0396(81)90113-3.  Google Scholar

[34]

R. C. A. M. van der Vorst, Variational identities and applications to differential systems,, Arch. Rat. Mech. Anal., 116 (1991), 375.  doi: doi:10.1007/BF00375674.  Google Scholar

[35]

R. C. A. M. van der Vorst, Best constant for the embedding of the space $H^2\cap H_0^1(\Omega)$ into $L^{\frac{2N}{N-4}}(\Omega)$,, Diff. Int. Eq., 6 (1993), 259.   Google Scholar

[36]

R. C. A. M. van der Vorst, Fourth order elliptic equations with critical growth,, C. R. Acad. Sci. Paris S\'erie I, 320 (1995), 295.   Google Scholar

[1]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[2]

José M. Arrieta, Simone M. Bruschi. Very rapidly varying boundaries in equations with nonlinear boundary conditions. The case of a non uniformly Lipschitz deformation. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 327-351. doi: 10.3934/dcdsb.2010.14.327

[3]

Mariane Bourgoing. Viscosity solutions of fully nonlinear second order parabolic equations with $L^1$ dependence in time and Neumann boundary conditions. Existence and applications to the level-set approach. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1047-1069. doi: 10.3934/dcds.2008.21.1047

[4]

Toshiyuki Ogawa, Takashi Okuda. Bifurcation analysis to Swift-Hohenberg equation with Steklov type boundary conditions. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 273-297. doi: 10.3934/dcds.2009.25.273

[5]

Hugo Beirão da Veiga. A challenging open problem: The inviscid limit under slip-type boundary conditions.. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 231-236. doi: 10.3934/dcdss.2010.3.231

[6]

M. Ben Ayed, Abdelbaki Selmi. Asymptotic behavior and existence results for a biharmonic equation involving the critical Sobolev exponent in a five-dimensional domain. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1705-1722. doi: 10.3934/cpaa.2010.9.1705

[7]

Chérif Amrouche, Yves Raudin. Singular boundary conditions and regularity for the biharmonic problem in the half-space. Communications on Pure & Applied Analysis, 2007, 6 (4) : 957-982. doi: 10.3934/cpaa.2007.6.957

[8]

Angelo Favini, Rabah Labbas, Keddour Lemrabet, Stéphane Maingot, Hassan D. Sidibé. Resolution and optimal regularity for a biharmonic equation with impedance boundary conditions and some generalizations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 4991-5014. doi: 10.3934/dcds.2013.33.4991

[9]

Jaeyoung Byeon, Sangdon Jin. The Hénon equation with a critical exponent under the Neumann boundary condition. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4353-4390. doi: 10.3934/dcds.2018190

[10]

Li Ma. Blow-up for semilinear parabolic equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1103-1110. doi: 10.3934/cpaa.2013.12.1103

[11]

Xiaomei Sun, Wenyi Chen. Positive solutions for singular elliptic equations with critical Hardy-Sobolev exponent. Communications on Pure & Applied Analysis, 2011, 10 (2) : 527-540. doi: 10.3934/cpaa.2011.10.527

[12]

Peng Chen, Xiaochun Liu. Multiplicity of solutions to Kirchhoff type equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2018, 17 (1) : 113-125. doi: 10.3934/cpaa.2018007

[13]

Kaimin Teng, Xiumei He. Ground state solutions for fractional Schrödinger equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2016, 15 (3) : 991-1008. doi: 10.3934/cpaa.2016.15.991

[14]

Shengfan Zhou, Linshan Wang. Kernel sections for damped non-autonomous wave equations with critical exponent. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 399-412. doi: 10.3934/dcds.2003.9.399

[15]

Zhongliang Wang. Nonradial positive solutions for a biharmonic critical growth problem. Communications on Pure & Applied Analysis, 2012, 11 (2) : 517-545. doi: 10.3934/cpaa.2012.11.517

[16]

Zongming Guo, Xiaohong Guan, Yonggang Zhao. Uniqueness and asymptotic behavior of solutions of a biharmonic equation with supercritical exponent. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2613-2636. doi: 10.3934/dcds.2019109

[17]

Yanfang Peng. On elliptic systems with Sobolev critical exponent. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3357-3373. doi: 10.3934/dcds.2016.36.3357

[18]

A. Kh. Khanmamedov. Global attractors for strongly damped wave equations with displacement dependent damping and nonlinear source term of critical exponent. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 119-138. doi: 10.3934/dcds.2011.31.119

[19]

Björn Birnir, Kenneth Nelson. The existence of smooth attractors of damped and driven nonlinear wave equations with critical exponent , s = 5. Conference Publications, 1998, 1998 (Special) : 100-117. doi: 10.3934/proc.1998.1998.100

[20]

Monika Laskawy. Optimality conditions of the first eigenvalue of a fourth order Steklov problem. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1843-1859. doi: 10.3934/cpaa.2017089

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]