Advanced Search
Article Contents
Article Contents

Shape optimization for Monge-Ampère equations via domain derivative

Abstract Related Papers Cited by
  • In this note we prove that, if $\Omega$ is a smooth, strictly convex, open set in $R^n$ $(n \ge 2)$ with given measure, the $L^1$ norm of the convex solution to the Dirichlet problem $\det D^2 u=1$ in $\Omega$, $u=0$ on $\partial\Omega$, is minimum whenever $\Omega$ is an ellipsoid.
    Mathematics Subject Classification: Primary: 35J60; Secondary: 52A40.


    \begin{equation} \\ \end{equation}
  • [1]

    A. Alvino, J. I. Diaz, P. L. Lions and G. Trombetti, Elliptic equations and Steiner symmetrization, Comm. Pure Appl. Math., 49 (1996), 217-236.doi: doi:10.1002/(SICI)1097-0312(199603)49:3<217::AID-CPA1>3.0.CO;2-G.


    B. Andrews, Contraction of convex hypersurfaces by their affine normal, J. Differential Geom., 43 (1996), 207-230.


    B. Brandolini, C. Nitsch and C. Trombetti, New isoperimetric estimates for solutions to Monge-Ampére equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1265-1275.


    F. Brock and A. Henrot, A symmetry result for an overdetermined elliptic problem using continuous rearrangement and domain derivative, Rend. Circ. Mat. Palermo (2), 51 (2002), 375-390.doi: doi:10.1007/BF02871848.


    L. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge-Amp\`ere equation, Comm. Pure Appl. Math., 37 (1984), 369-402.doi: doi:10.1002/cpa.3160370306.


    V. Ferone and A. Mercaldo, A second order derivation formula for functions defined by integrals, C. R. Acad. Sci. Paris Sér. I Math., 326 (1998), 549-554.


    A. Henrot and E. Oudet, Minimizing the second eigenvalue of the Laplace operator with Dirichlet boundary conditions, Arch. Ration. Mech. Anal., 169 (2003), 73-87.doi: doi:10.1007/s00205-003-0259-4.


    A. Henrot and M. Pierre, "Variation et Optimisation de Formes. Une Analyse Géométrique," Mathématiques & Applications, vol. 48, Springer, 2005.


    C. M. Petty, Affine isoperimetric problems, in "Discrete Geometry and Convexity" (New York, 1982), Ann. New York Acad. Sci., vol. 440, New York Acad. Sci., New York, (1985), 113-127.


    R. C. Reilly, On the Hessian of a function and the curvatures of its graph, Michigan Math. J., 20 (1973), 373-383.


    R. Schneider, "Convex Bodies: The Brunn-Minkowski Theory," Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1993.


    J. Sokolowski and J. P. Zolésio, "Introduction to Shape Optimization. Shape Sensitivity Analysis," Springer Series in Computational Mathematics, vol. 16, Springer-Verlag, Berlin, 1992.


    G. Talenti, Elliptic equations and rearrangements, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 3 (1976), 697-718.


    G. Trombetti, Symmetrization methods for partial differential equations (Italian), Boll. Un. Mat. Ital. B (8), 3 (2000), 601-634.

  • 加载中

Article Metrics

HTML views() PDF downloads(103) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint