Citation: |
[1] |
A. Alvino, J. I. Diaz, P. L. Lions and G. Trombetti, Elliptic equations and Steiner symmetrization, Comm. Pure Appl. Math., 49 (1996), 217-236.doi: doi:10.1002/(SICI)1097-0312(199603)49:3<217::AID-CPA1>3.0.CO;2-G. |
[2] |
B. Andrews, Contraction of convex hypersurfaces by their affine normal, J. Differential Geom., 43 (1996), 207-230. |
[3] |
B. Brandolini, C. Nitsch and C. Trombetti, New isoperimetric estimates for solutions to Monge-Ampére equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1265-1275. |
[4] |
F. Brock and A. Henrot, A symmetry result for an overdetermined elliptic problem using continuous rearrangement and domain derivative, Rend. Circ. Mat. Palermo (2), 51 (2002), 375-390.doi: doi:10.1007/BF02871848. |
[5] |
L. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge-Amp\`ere equation, Comm. Pure Appl. Math., 37 (1984), 369-402.doi: doi:10.1002/cpa.3160370306. |
[6] |
V. Ferone and A. Mercaldo, A second order derivation formula for functions defined by integrals, C. R. Acad. Sci. Paris Sér. I Math., 326 (1998), 549-554. |
[7] |
A. Henrot and E. Oudet, Minimizing the second eigenvalue of the Laplace operator with Dirichlet boundary conditions, Arch. Ration. Mech. Anal., 169 (2003), 73-87.doi: doi:10.1007/s00205-003-0259-4. |
[8] |
A. Henrot and M. Pierre, "Variation et Optimisation de Formes. Une Analyse Géométrique," Mathématiques & Applications, vol. 48, Springer, 2005. |
[9] |
C. M. Petty, Affine isoperimetric problems, in "Discrete Geometry and Convexity" (New York, 1982), Ann. New York Acad. Sci., vol. 440, New York Acad. Sci., New York, (1985), 113-127. |
[10] |
R. C. Reilly, On the Hessian of a function and the curvatures of its graph, Michigan Math. J., 20 (1973), 373-383. |
[11] |
R. Schneider, "Convex Bodies: The Brunn-Minkowski Theory," Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1993. |
[12] |
J. Sokolowski and J. P. Zolésio, "Introduction to Shape Optimization. Shape Sensitivity Analysis," Springer Series in Computational Mathematics, vol. 16, Springer-Verlag, Berlin, 1992. |
[13] |
G. Talenti, Elliptic equations and rearrangements, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 3 (1976), 697-718. |
[14] |
G. Trombetti, Symmetrization methods for partial differential equations (Italian), Boll. Un. Mat. Ital. B (8), 3 (2000), 601-634. |