Advanced Search
Article Contents
Article Contents

Dissipativity for a semi-linearized system modeling cellular flames

Abstract Related Papers Cited by
  • We study a Semi-Linearized System (SLS) of second order PDEs modeling flame front dynamics. SLS is a simplified version of the weak $\kappa\theta$ model of cellular flames which is dynamically similar to the Kuramoto-Sivashinsky (KS) equation [7, 4]. We prove existence of the solutions at large, and their proximity, for finite time, to the solutions of KS. We demonstrate that SLS possesses a universal absorbing set and a compact attractor. Furthermore, we show that the attractor is of finite Hausdorff dimension.
    Mathematics Subject Classification: Primary: 35K55, 35B25; Secondary: 80A25.


    \begin{equation} \\ \end{equation}
  • [1]

    C.-M. Brauner and A. Lunardi, Instabilities in a two-dimensional combustion model with free boundary, Arch. Rational. Mech. Anal., 154 (2000), 157-182.doi: doi:10.1007/s002050000099.


    C.-M. Brauner, M. Frankel, J. Hulshof and G. I. Sivashinsky, Weakly nonlinear asymptotics of the $\kappa-\theta$ model of cellular flames: The QS equation, Interfaces Free Bound., 7 (2005), 131-146.doi: doi:10.4171/IFB/117.


    C.-M. Brauner, M. Frankel, J. Hulshof and V. Roytburd, Stability and attractors for the quasi-steady equation of cellular flames, Interfaces Free Bound., 8 (2006), 301-316.doi: doi:10.4171/IFB/145.


    C.-M. Brauner, M. Frankel, J. Hulshof, A. Lunardy and G. I. Sivashinsky, On the model of cellular flames: Existence in the large and asymptotics, DCDS-S, 1 (2008), 27-39.


    C. Foias and G. Prodi, Sur le comportement global des solutions non stationnaire des équations Navier-Stokes en dimension 2, Rend. Sem. Mat. Univ. Padova, 39 (1967), 1-34.


    M. L. Frankel and G. I. Sivashinsky, On the nonlinear thermal-diffusive theory of curved flames, J. Physique, 48 (1987), 25-28.


    M. Frankel, P. V. Gordon and G. I. Sivashinsky, On disintegration of near-limit cellular flames, Phys. Lett. A, 310 (2003), 389-392.doi: doi:10.1016/S0375-9601(03)00385-2.


    M. Frankel and V.Roytburd, Numerical study of the semi-linearized system modeling cellular flames, In preparation (2009).


    J. Goodman, Stability of the Kuramoto-Sivashinsky and related systems, Comm. Pure Appl. Math., 47 (1994), 293-306.doi: doi:10.1002/cpa.3160470304.


    D. Henry, "Geometric Theory of Semilinear Parabolic Equations," Lecture Notes in Mathematics, Vol. 840, Springer-Verlag, New York 1981.


    D. Hilhorst, L. A. Peletier, A. I. Rotariu and G. I. Sivashinsky, Global attractor and inertial sets for a non-local Kuramoto-Sivashinsky equation, DCDS-A, 10 (2004), 557-580.


    Y. Kuramoto, Diffusion induced chaos in reactions systems, Progr. Theoret. Phys. Suppl., 64 (1978), 346-367.doi: doi:10.1143/PTPS.64.346.


    B. Malomed, Bao-Feng Feng and T. Kawahara, Stabilized Kuramoto-Sivashinsky system, Phys. Rev. E, 64 (2001), 046304.


    B. J. Matkowsky and G. I. Sivashinsky, An asymptotic derivation of two models in flame theory associated with the constant density approximation, SIAM J. Appl. Math., 37 (1979), 696-699.doi: doi:10.1137/0137051.


    A. A. Nepomnyashchy, Stability of wave regimes in a film flowing down on inclined plane, Fluid Dyn., 9, (1974) 354-359.doi: doi:10.1007/BF01025515.


    G. I. Sivashinsky, Nonlinear analysis of hydrodynamic instability in laminar flames, Part I. Derivation of basic equations, Acta Astronaut. 4 (1977), 1177-1206.doi: doi:10.1016/0094-5765(77)90096-0.


    R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics," 2nd edition, Springer-Verlag, New York, 1997.


    J. Topper and T. Kawahara, Approximate equations for long nonlinear waves on a viscous film, J. Phys. Soc. Japan, 44 (1978), 663-666.doi: doi:10.1143/JPSJ.44.663.

  • 加载中

Article Metrics

HTML views() PDF downloads(68) Cited by(0)

Access History



    DownLoad:  Full-Size Img  PowerPoint