\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Dissipativity for a semi-linearized system modeling cellular flames

Abstract Related Papers Cited by
  • We study a Semi-Linearized System (SLS) of second order PDEs modeling flame front dynamics. SLS is a simplified version of the weak $\kappa\theta$ model of cellular flames which is dynamically similar to the Kuramoto-Sivashinsky (KS) equation [7, 4]. We prove existence of the solutions at large, and their proximity, for finite time, to the solutions of KS. We demonstrate that SLS possesses a universal absorbing set and a compact attractor. Furthermore, we show that the attractor is of finite Hausdorff dimension.
    Mathematics Subject Classification: Primary: 35K55, 35B25; Secondary: 80A25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    C.-M. Brauner and A. Lunardi, Instabilities in a two-dimensional combustion model with free boundary, Arch. Rational. Mech. Anal., 154 (2000), 157-182.doi: doi:10.1007/s002050000099.

    [2]

    C.-M. Brauner, M. Frankel, J. Hulshof and G. I. Sivashinsky, Weakly nonlinear asymptotics of the $\kappa-\theta$ model of cellular flames: The QS equation, Interfaces Free Bound., 7 (2005), 131-146.doi: doi:10.4171/IFB/117.

    [3]

    C.-M. Brauner, M. Frankel, J. Hulshof and V. Roytburd, Stability and attractors for the quasi-steady equation of cellular flames, Interfaces Free Bound., 8 (2006), 301-316.doi: doi:10.4171/IFB/145.

    [4]

    C.-M. Brauner, M. Frankel, J. Hulshof, A. Lunardy and G. I. Sivashinsky, On the model of cellular flames: Existence in the large and asymptotics, DCDS-S, 1 (2008), 27-39.

    [5]

    C. Foias and G. Prodi, Sur le comportement global des solutions non stationnaire des équations Navier-Stokes en dimension 2, Rend. Sem. Mat. Univ. Padova, 39 (1967), 1-34.

    [6]

    M. L. Frankel and G. I. Sivashinsky, On the nonlinear thermal-diffusive theory of curved flames, J. Physique, 48 (1987), 25-28.

    [7]

    M. Frankel, P. V. Gordon and G. I. Sivashinsky, On disintegration of near-limit cellular flames, Phys. Lett. A, 310 (2003), 389-392.doi: doi:10.1016/S0375-9601(03)00385-2.

    [8]

    M. Frankel and V.Roytburd, Numerical study of the semi-linearized system modeling cellular flames, In preparation (2009).

    [9]

    J. Goodman, Stability of the Kuramoto-Sivashinsky and related systems, Comm. Pure Appl. Math., 47 (1994), 293-306.doi: doi:10.1002/cpa.3160470304.

    [10]

    D. Henry, "Geometric Theory of Semilinear Parabolic Equations," Lecture Notes in Mathematics, Vol. 840, Springer-Verlag, New York 1981.

    [11]

    D. Hilhorst, L. A. Peletier, A. I. Rotariu and G. I. Sivashinsky, Global attractor and inertial sets for a non-local Kuramoto-Sivashinsky equation, DCDS-A, 10 (2004), 557-580.

    [12]

    Y. Kuramoto, Diffusion induced chaos in reactions systems, Progr. Theoret. Phys. Suppl., 64 (1978), 346-367.doi: doi:10.1143/PTPS.64.346.

    [13]

    B. Malomed, Bao-Feng Feng and T. Kawahara, Stabilized Kuramoto-Sivashinsky system, Phys. Rev. E, 64 (2001), 046304.

    [14]

    B. J. Matkowsky and G. I. Sivashinsky, An asymptotic derivation of two models in flame theory associated with the constant density approximation, SIAM J. Appl. Math., 37 (1979), 696-699.doi: doi:10.1137/0137051.

    [15]

    A. A. Nepomnyashchy, Stability of wave regimes in a film flowing down on inclined plane, Fluid Dyn., 9, (1974) 354-359.doi: doi:10.1007/BF01025515.

    [16]

    G. I. Sivashinsky, Nonlinear analysis of hydrodynamic instability in laminar flames, Part I. Derivation of basic equations, Acta Astronaut. 4 (1977), 1177-1206.doi: doi:10.1016/0094-5765(77)90096-0.

    [17]

    R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics," 2nd edition, Springer-Verlag, New York, 1997.

    [18]

    J. Topper and T. Kawahara, Approximate equations for long nonlinear waves on a viscous film, J. Phys. Soc. Japan, 44 (1978), 663-666.doi: doi:10.1143/JPSJ.44.663.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(68) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return