August  2011, 4(4): 865-873. doi: 10.3934/dcdss.2011.4.865

On the motion of polygonal curves with asymptotic lines by crystalline curvature flow with bulk effect

1. 

Shibaura Institute of Technology, Fukasaku 309, Minuma-ku, Saitama, 337-8570, Japan

Received  September 2009 Revised  November 2009 Published  November 2010

The behavior of polygonal curves with asymptotic lines to crystalline motion with the bulk effect is discussed. We show sufficient conditions for global existence of the solutions and characterize facet-extinction patterns. We also show the eventual monotonicity of shape of the solution curves, that is, the solutions become V-shaped in finite time.
Citation: Tetsuya Ishiwata. On the motion of polygonal curves with asymptotic lines by crystalline curvature flow with bulk effect. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 865-873. doi: 10.3934/dcdss.2011.4.865
References:
[1]

S. Angenent and M. E. Gurtin, Multiphase thermomechanics with interfacial structure, 2. Evolution of an isothermal interface,, Arch. Rational Mech. Anal., 108 (1989), 323.  doi: doi:10.1007/BF01041068.  Google Scholar

[2]

Y. Giga and M. E. Gurtin, A comparison theorem for crystalline evolution in the plane,, Quart. J. Appl. Math., LIV (1996), 727.   Google Scholar

[3]

M. E. Gurtin, "Thermomechanics of Evolving Phase Boundaries in the Plane,", Oxford, (1993).   Google Scholar

[4]

T. Ishiwata, Motion of non-convex polygons by crystalline curvature and almost convexity phenomena,, Japan Journal of Industrial and Applied Mathematics, 25 (2008), 233.  doi: doi:10.1007/BF03167521.  Google Scholar

[5]

Y. Marutani, H. Ninomiya and R. Weidenfeld, Traveling curved fronts of anisotropic curvature flows,, Japan Journal of Industrial and Applied Mathematics, 23 (2006), 83.  doi: doi:10.1007/BF03167500.  Google Scholar

[6]

S. Yazaki, Point-extinction and geometric expansion of solutions to a crystalline motion,, Hokkaido Math. J., 30 (2001), 327.   Google Scholar

show all references

References:
[1]

S. Angenent and M. E. Gurtin, Multiphase thermomechanics with interfacial structure, 2. Evolution of an isothermal interface,, Arch. Rational Mech. Anal., 108 (1989), 323.  doi: doi:10.1007/BF01041068.  Google Scholar

[2]

Y. Giga and M. E. Gurtin, A comparison theorem for crystalline evolution in the plane,, Quart. J. Appl. Math., LIV (1996), 727.   Google Scholar

[3]

M. E. Gurtin, "Thermomechanics of Evolving Phase Boundaries in the Plane,", Oxford, (1993).   Google Scholar

[4]

T. Ishiwata, Motion of non-convex polygons by crystalline curvature and almost convexity phenomena,, Japan Journal of Industrial and Applied Mathematics, 25 (2008), 233.  doi: doi:10.1007/BF03167521.  Google Scholar

[5]

Y. Marutani, H. Ninomiya and R. Weidenfeld, Traveling curved fronts of anisotropic curvature flows,, Japan Journal of Industrial and Applied Mathematics, 23 (2006), 83.  doi: doi:10.1007/BF03167500.  Google Scholar

[6]

S. Yazaki, Point-extinction and geometric expansion of solutions to a crystalline motion,, Hokkaido Math. J., 30 (2001), 327.   Google Scholar

[1]

Tetsuya Ishiwata, Takeshi Ohtsuka. Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 893-907. doi: 10.3934/dcdss.2020390

[2]

Huyuan Chen, Dong Ye, Feng Zhou. On gaussian curvature equation in $ \mathbb{R}^2 $ with prescribed nonpositive curvature. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3201-3214. doi: 10.3934/dcds.2020125

[3]

Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268

[4]

Hua Zhong, Xiaolin Fan, Shuyu Sun. The effect of surface pattern property on the advancing motion of three-dimensional droplets. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020366

[5]

Soonki Hong, Seonhee Lim. Martin boundary of brownian motion on gromov hyperbolic metric graphs. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021014

[6]

Petr Pauš, Shigetoshi Yazaki. Segmentation of color images using mean curvature flow and parametric curves. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1123-1132. doi: 10.3934/dcdss.2020389

[7]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, 2021, 20 (1) : 339-358. doi: 10.3934/cpaa.2020269

[8]

Shin-Ichiro Ei, Hiroshi Ishii. The motion of weakly interacting localized patterns for reaction-diffusion systems with nonlocal effect. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 173-190. doi: 10.3934/dcdsb.2020329

[9]

Peter Frolkovič, Viera Kleinová. A new numerical method for level set motion in normal direction used in optical flow estimation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 851-863. doi: 10.3934/dcdss.2020347

[10]

Kohei Nakamura. An application of interpolation inequalities between the deviation of curvature and the isoperimetric ratio to the length-preserving flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1093-1102. doi: 10.3934/dcdss.2020385

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (34)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]