-
Previous Article
The degenerate drift-diffusion system with the Sobolev critical exponent
- DCDS-S Home
- This Issue
-
Next Article
On a new kind of convexity for solutions of parabolic problems
On the motion of polygonal curves with asymptotic lines by crystalline curvature flow with bulk effect
1. | Shibaura Institute of Technology, Fukasaku 309, Minuma-ku, Saitama, 337-8570, Japan |
References:
[1] |
S. Angenent and M. E. Gurtin, Multiphase thermomechanics with interfacial structure, 2. Evolution of an isothermal interface,, Arch. Rational Mech. Anal., 108 (1989), 323.
doi: doi:10.1007/BF01041068. |
[2] |
Y. Giga and M. E. Gurtin, A comparison theorem for crystalline evolution in the plane,, Quart. J. Appl. Math., LIV (1996), 727.
|
[3] |
M. E. Gurtin, "Thermomechanics of Evolving Phase Boundaries in the Plane,", Oxford, (1993).
|
[4] |
T. Ishiwata, Motion of non-convex polygons by crystalline curvature and almost convexity phenomena,, Japan Journal of Industrial and Applied Mathematics, 25 (2008), 233.
doi: doi:10.1007/BF03167521. |
[5] |
Y. Marutani, H. Ninomiya and R. Weidenfeld, Traveling curved fronts of anisotropic curvature flows,, Japan Journal of Industrial and Applied Mathematics, 23 (2006), 83.
doi: doi:10.1007/BF03167500. |
[6] |
S. Yazaki, Point-extinction and geometric expansion of solutions to a crystalline motion,, Hokkaido Math. J., 30 (2001), 327.
|
show all references
References:
[1] |
S. Angenent and M. E. Gurtin, Multiphase thermomechanics with interfacial structure, 2. Evolution of an isothermal interface,, Arch. Rational Mech. Anal., 108 (1989), 323.
doi: doi:10.1007/BF01041068. |
[2] |
Y. Giga and M. E. Gurtin, A comparison theorem for crystalline evolution in the plane,, Quart. J. Appl. Math., LIV (1996), 727.
|
[3] |
M. E. Gurtin, "Thermomechanics of Evolving Phase Boundaries in the Plane,", Oxford, (1993).
|
[4] |
T. Ishiwata, Motion of non-convex polygons by crystalline curvature and almost convexity phenomena,, Japan Journal of Industrial and Applied Mathematics, 25 (2008), 233.
doi: doi:10.1007/BF03167521. |
[5] |
Y. Marutani, H. Ninomiya and R. Weidenfeld, Traveling curved fronts of anisotropic curvature flows,, Japan Journal of Industrial and Applied Mathematics, 23 (2006), 83.
doi: doi:10.1007/BF03167500. |
[6] |
S. Yazaki, Point-extinction and geometric expansion of solutions to a crystalline motion,, Hokkaido Math. J., 30 (2001), 327.
|
[1] |
Tetsuya Ishiwata, Takeshi Ohtsuka. Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 893-907. doi: 10.3934/dcdss.2020390 |
[2] |
Huyuan Chen, Dong Ye, Feng Zhou. On gaussian curvature equation in $ \mathbb{R}^2 $ with prescribed nonpositive curvature. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3201-3214. doi: 10.3934/dcds.2020125 |
[3] |
Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268 |
[4] |
Hua Zhong, Xiaolin Fan, Shuyu Sun. The effect of surface pattern property on the advancing motion of three-dimensional droplets. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020366 |
[5] |
Soonki Hong, Seonhee Lim. Martin boundary of brownian motion on gromov hyperbolic metric graphs. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021014 |
[6] |
Petr Pauš, Shigetoshi Yazaki. Segmentation of color images using mean curvature flow and parametric curves. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1123-1132. doi: 10.3934/dcdss.2020389 |
[7] |
Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, 2021, 20 (1) : 339-358. doi: 10.3934/cpaa.2020269 |
[8] |
Shin-Ichiro Ei, Hiroshi Ishii. The motion of weakly interacting localized patterns for reaction-diffusion systems with nonlocal effect. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 173-190. doi: 10.3934/dcdsb.2020329 |
[9] |
Peter Frolkovič, Viera Kleinová. A new numerical method for level set motion in normal direction used in optical flow estimation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 851-863. doi: 10.3934/dcdss.2020347 |
[10] |
Kohei Nakamura. An application of interpolation inequalities between the deviation of curvature and the isoperimetric ratio to the length-preserving flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1093-1102. doi: 10.3934/dcdss.2020385 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]