\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The degenerate drift-diffusion system with the Sobolev critical exponent

Abstract / Introduction Related Papers Cited by
  • We consider the drift-diffusion system of degenerated type. For $n\ge 3$,

    $\partial_t \rho -\Delta \rho^\alpha + \kappa\nabla\cdot (\rho \nabla \psi ) =0, t>0, x \in R^n,$

    $-\Delta \psi = \rho, t>0, x \in R^n,$

    $\rho(0,x) = \rho_0(x)\ge 0, x \in R^n,$

    where $\alpha>1$ and $\kappa=1$. There exists a critical exponent that classifies the global behavior of the weak solution. In particular, we consider the critical case $\alpha_*=\frac{2 n}{n+2}=(2^*)'$, where the Talenti function $U(x)$ solving $-2^*\Delta U^{\frac{n-2}{n+2}}=U$ in $R^n$ classifies the global existence of the weak solution and finite blow-up of the solution.

    Mathematics Subject Classification: Primary: 35K15, 35K55, 35Q60; Secondary: 78A35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    P. Biler, Local and global solvability of some parabolic systems modeling chemotaxis, Adv. Math. Sci. Appl., 8 (1998), 715-743.

    [2]

    P. Biler and J. Dolbeault, Long time behavior of solutions to Nernst-Planck and Debye-Hünkel drift-diffusion systems, Ann. Henry Poincaré, 1 (2000), 461-472.

    [3]

    P. Biler, W. Hebisch and T. Nadzieja, The Debye system: Existence and large time behavior of solutions, Nonlinear Anal. T.M.A., 23 (1994), 1189-1209.doi: doi:10.1016/0362-546X(94)90101-5.

    [4]

    P. Biler, T. Nadzieja and R. Stanczy, Nonisothermal systems of self-attracting Fermi-Dirac particles, Banach Center Pulb., 66 (2004), 61-78.doi: doi:10.4064/bc66-0-5.

    [5]

    A. Blanchet, J. Dobeault and B. Perthame, Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions, Electron. J. Differential Equations, 2006 (2006), 32 pp. (electronic).

    [6]

    J.I. Díaz, G. Galiano and A. Jüngel, On a quasilinear degenerate system arising in semiconductor theory, Part II, Nonlinear Anal., 36 (1999), 569-594.

    [7]

    J. I. Díaz, G. Galiano and A. Jüngel, On a quasilinear degenerate system arising in semiconductor theory, Part I, Nonlinear Anal. Real World Appl., 2 (2001), 305-336.

    [8]

    W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modeling chemotaxis, Trans. Amer. Math. Soc., 329 (1992), 819-824.doi: doi:10.1142/S0218202595000292.

    [9]

    A. Jüngel, Qualitative behavior of solutions of a degenerate nonlinear drift-diffusion model for semiconductors, Math. Model. Meth. Appl. Sci., 5 (1995), 497-518.

    [10]

    E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.doi: doi:10.1016/0022-5193(70)90092-5.

    [11]

    C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675.doi: doi:10.1007/s00222-006-0011-4.

    [12]

    C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing non-linear wave equation, Acta Math., 201 (2008), 147-212.doi: doi:10.1007/s11511-008-0031-6.

    [13]

    T. Kobayashi and T. OgawaFluid mechanical approximation to the degenerated drift-diffusion system from compressible Navier-Stokes-Poisson system, preprint.

    [14]

    M. Kurokiba, T. Nagai and T. Ogawa, The uniform boundedness and threshold for the global existence of the radial solution to a drift-diffusion system, Comm. Pure Appl. Anal., 5 (2006), 97-106.

    [15]

    M. Kurokiba and T. Ogawa, Finite time blow-up of the solution for a nonlinear parabolic equation of drift-diffusion type, Differential Integral Equations, 16 (2003), 427-452.

    [16]

    M. Kurokiba and T. Ogawa, Wellposedness of the for the drift-diffusion system in $L^p$ arising from the semiconductor device simulation, J. Math. Anal. Appl., 342 (2008), 1052-1067.doi: doi:10.1016/j.jmaa.2007.11.017.

    [17]

    M. S. Mock, An initial value problem from semiconductor devise theory, SIAM J. Math., 5 (1974), 597-612.doi: doi:10.1137/0505061.

    [18]

    T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci.Appl., 5 (1995), 581-601.

    [19]

    T. Nagai, Global existence of solutions to a parabolic system for chemotaxis in two space dimensions, Nonlinear Anal. T.M.A., 30 (1997), 5381-5388.doi: doi:10.1016/S0362-546X(97)00395-7.

    [20]

    T. Nagai, Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains, J. Inequal. Appl., 6 (2001), 37-55.doi: doi:10.1155/S1025583401000042.

    [21]

    T. Nagai and T. OgawaGlobal existence of solutions to a parabolic-elliptic system of drift-diffusion type in $R^2$, preprint.

    [22]

    T. Nagai, T. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411-433.

    [23]

    T. Nagai, T. Senba and T. Suzuki, Chemotactic collapse in a parabolic system of mathematical biology, Hiroshima Math. J., 30 (2000), 463-497.

    [24]

    T. Ogawa, Decay and asymptotic behavior of a solution of the Keller-Segel system of degenerated and non-degenerated type, Banach Center Publ., 74 (2006), 161-184.doi: doi:10.4064/bc74-0-10.

    [25]

    T. Ogawa, Asymptotic stability of a decaying solution to the Keller-Segel system of degenerate type, Differential Integral Equations, 21 (2008), 1113-1154.

    [26]

    T. OgawaDecay and finite time blow-up of solutions to degenerate drift-diffusion system with the Sobolev critical exponent, preprint.

    [27]

    F. Otto, The geometry of dissipative evolution equations: The porous medium equation, Comm. P.D.E., 26 (2001), 101-174.doi: doi:10.1081/PDE-100002243.

    [28]

    D. H. Sattinger, On global solution of nonlinear hyperbolic equations, Arch. Rat. Mech. Anal., 30 (1968), 148-172.doi: doi:10.1007/BF00250942.

    [29]

    T. Senba and T. Suzuki, Chemotaxis collapse in a parabolic-elliptic system of mathematical biology, Adv. Differential Equations, 6 (2001), 21-50.

    [30]

    T. Senba and T. Suzuki, Blow up behavior of solutions to the rescaled Jäger-Luckhaus system, Adv. Differential Equations, 8 (2003), 787-820.

    [31]

    Y. Sugiyama, Global existence in sub-critical cases and finite time blow-up in super-critical cases to degenerate Keller-Segel system, Differential Integral Equations, 19 (2006), 841-876.

    [32]

    Y. Sugiyama, Application of the best constant of the Sobolev inequality to degenerate Keller-Segel models, Adv. Differential Equations, 12 (2007), 121-144.

    [33]

    T. Suzuki, "Free Energy and Self-Interacting Particles," in "Progress in Nonlinear Differential Equations and Their Applications," 62, Birkhäuser Boston Inc., Boston, MA, 2005.

    [34]

    G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl., 110 (1976), 353-372.doi: doi:10.1007/BF02418013.

    [35]

    M. Tsutsumi, Existence and nonexistence of global solutions for nonlinear parabolic equations, Publ. RIMS Kyoto Univ., 8 (1972), 211-229.doi: doi:10.2977/prims/1195193108.

    [36]

    G. Wolansky, Comparison between two models of self-gravitating clusters: Conditions for gravitational collapse, Nonlinear Anal. T.M.A., 24 (1995), 1119-1129.doi: doi:10.1016/0362-546X(94)E0028-F.

    [37]

    A. Yagi, Norm behavior of solutions to a parabolic system of chemotaxis, Math. Japon., 45 (1997), 241-265.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(98) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return