August  2011, 4(4): 897-906. doi: 10.3934/dcdss.2011.4.897

Singular backward self-similar solutions of a semilinear parabolic equation

1. 

Mathematical Institute, Tohoku University, Sendai 980-8578, Japan

2. 

Department of Mathematics, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan

Received  September 2009 Revised  December 2009 Published  November 2010

We consider a parabolic partial differential equation with power nonlinearity. Our concern is the existence of a singular solution whose singularity becomes anomalous in finite time. First we study the structure of singular radial solutions for an equation derived by backward self-similar variables. Using this, we obtain a singular backward self-similar solution whose singularity becomes stronger or weaker than that of a singular steady state.
Citation: Shota Sato, Eiji Yanagida. Singular backward self-similar solutions of a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 897-906. doi: 10.3934/dcdss.2011.4.897
References:
[1]

C. J. Budd and Y.-W. Qi, The existence of bounded solutions of a semilinear elliptic equation,, J. Differential Equations, 82 (1989), 207.  doi: doi:10.1016/0022-0396(89)90131-9.  Google Scholar

[2]

E. A. Coddington and N. Levinson, "Theory of Ordinary Differential Equations,", McGraw-Hill Book Company, (1955).   Google Scholar

[3]

C.-C. Chen and C.-S. Lin, Existence of positive weak solutions with a prescribed singular set of semilinear elliptic equations,, J. Geometric Analysis, 9 (1999), 221.   Google Scholar

[4]

Y. Giga and R. V. Kohn, Nondegeneracy of blowup for semilinear heat equation,, Comm. Pure Appl. Math., 42 (1989), 845.  doi: doi:10.1002/cpa.3160420607.  Google Scholar

[5]

L. A. Lepin, Countable spectrum of eigenfunctions of a nonlinear heat-conduction equation with distributed parameters,, Differentsial'nye Uravneniya, 24 (1988), 1226.   Google Scholar

[6]

L. A. Lepin, Self-similar solutions of a semilinear heat equation,, Mat. Model., 2 (1990), 63.   Google Scholar

[7]

N. Mizoguchi, Nonexistence of backward self-similar blowup solutions to a supercritical semilinear heat equation,, J. Funct. Anal. \textbf{257} (2009), 257 (2009), 2911.  doi: doi:10.1016/j.jfa.2009.07.009.  Google Scholar

[8]

N. Mizoguchi, On backward self-similar blowup solutions to a supercritical semilinear heat equation,, Proc. Roy. Soc. Edinburgh Sect. A \textbf{140} (2010), 140 (2010), 821.  doi: doi:10.1017/S0308210509000444.  Google Scholar

[9]

Y. Naito and T. Suzuki, Existence of type II blowup solutions for a semilinear heat equation with critical nonlinearity,, J. Differential Equations, 232 (2007), 176.  doi: doi:10.1016/j.jde.2006.07.012.  Google Scholar

[10]

S. Sato and E. Yanagida, Solutions with moving singularities for a semilinear parabolic equation,, J. Differential Equations, 246 (2009), 724.  doi: doi:10.1016/j.jde.2008.09.004.  Google Scholar

[11]

S. Sato and E. Yanagida, Forward self-similar solution with a moving singularity for a semilinear parabolic equation,, Disc. Cont. Dyn. Systems, 26 (2010), 313.   Google Scholar

[12]

S. Sato and E. Yanagida, Backward self-similar solution with a moving singularity for a semilinear parabolic equation,, preprint., ().   Google Scholar

[13]

T. Suzuki, Semilinear parabolic equation on bounded domain with critical Sobolev exponent,, Indiana Univ. Math. J., 57 (2008), 3365.  doi: doi:10.1512/iumj.2008.57.3269.  Google Scholar

[14]

W. C. Troy, The existence of bounded solutions of a semilinear heat equation,, SIAM J. Math. Anal., 18 (1987), 332.  doi: doi:10.1137/0518026.  Google Scholar

[15]

L. Véron, "Singularities of Solutions of Second Order Quasilinear Equations,", Pitman Research Notes in Mathematics Series, 353 (1996).   Google Scholar

show all references

References:
[1]

C. J. Budd and Y.-W. Qi, The existence of bounded solutions of a semilinear elliptic equation,, J. Differential Equations, 82 (1989), 207.  doi: doi:10.1016/0022-0396(89)90131-9.  Google Scholar

[2]

E. A. Coddington and N. Levinson, "Theory of Ordinary Differential Equations,", McGraw-Hill Book Company, (1955).   Google Scholar

[3]

C.-C. Chen and C.-S. Lin, Existence of positive weak solutions with a prescribed singular set of semilinear elliptic equations,, J. Geometric Analysis, 9 (1999), 221.   Google Scholar

[4]

Y. Giga and R. V. Kohn, Nondegeneracy of blowup for semilinear heat equation,, Comm. Pure Appl. Math., 42 (1989), 845.  doi: doi:10.1002/cpa.3160420607.  Google Scholar

[5]

L. A. Lepin, Countable spectrum of eigenfunctions of a nonlinear heat-conduction equation with distributed parameters,, Differentsial'nye Uravneniya, 24 (1988), 1226.   Google Scholar

[6]

L. A. Lepin, Self-similar solutions of a semilinear heat equation,, Mat. Model., 2 (1990), 63.   Google Scholar

[7]

N. Mizoguchi, Nonexistence of backward self-similar blowup solutions to a supercritical semilinear heat equation,, J. Funct. Anal. \textbf{257} (2009), 257 (2009), 2911.  doi: doi:10.1016/j.jfa.2009.07.009.  Google Scholar

[8]

N. Mizoguchi, On backward self-similar blowup solutions to a supercritical semilinear heat equation,, Proc. Roy. Soc. Edinburgh Sect. A \textbf{140} (2010), 140 (2010), 821.  doi: doi:10.1017/S0308210509000444.  Google Scholar

[9]

Y. Naito and T. Suzuki, Existence of type II blowup solutions for a semilinear heat equation with critical nonlinearity,, J. Differential Equations, 232 (2007), 176.  doi: doi:10.1016/j.jde.2006.07.012.  Google Scholar

[10]

S. Sato and E. Yanagida, Solutions with moving singularities for a semilinear parabolic equation,, J. Differential Equations, 246 (2009), 724.  doi: doi:10.1016/j.jde.2008.09.004.  Google Scholar

[11]

S. Sato and E. Yanagida, Forward self-similar solution with a moving singularity for a semilinear parabolic equation,, Disc. Cont. Dyn. Systems, 26 (2010), 313.   Google Scholar

[12]

S. Sato and E. Yanagida, Backward self-similar solution with a moving singularity for a semilinear parabolic equation,, preprint., ().   Google Scholar

[13]

T. Suzuki, Semilinear parabolic equation on bounded domain with critical Sobolev exponent,, Indiana Univ. Math. J., 57 (2008), 3365.  doi: doi:10.1512/iumj.2008.57.3269.  Google Scholar

[14]

W. C. Troy, The existence of bounded solutions of a semilinear heat equation,, SIAM J. Math. Anal., 18 (1987), 332.  doi: doi:10.1137/0518026.  Google Scholar

[15]

L. Véron, "Singularities of Solutions of Second Order Quasilinear Equations,", Pitman Research Notes in Mathematics Series, 353 (1996).   Google Scholar

[1]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[2]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[3]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[4]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[5]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[6]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[7]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[8]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[9]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[10]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[11]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[12]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[13]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHum approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[14]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[15]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[16]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[17]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[18]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020274

[19]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[20]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (47)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]