October  2011, 4(5): 923-955. doi: 10.3934/dcdss.2011.4.923

Nonlinear wave dynamics: From lasers to fluids

1. 

Department of Applied Mathematics, University of Colorado, Boulder, CO 80309-0526, United States, United States, United States, United States

2. 

Department of Mathematics, University of Ioannina, Ioannina 45110, Greece

Received  September 2009 Revised  December 2009 Published  December 2010

Nonlinear wave equations are central to the study of nonlinear optics and fluid dynamics. Notably, recent research has shown that solitons can be generated in mode-locked lasers. An interesting application of these lasers is the development of optical clocks which have the potential to be considerably more accurate than atomic clocks. Another important area of research in nonlinear optics is lattice dynamics where localized solitary wave or solitons can be obtained in periodic and irregular lattice systems. In honeycomb lattices, discrete and continuous nonlinear Dirac systems can be derived in certain parameter regimes; the Dirac systems describe conical diffraction, a phenomena observed in recent experiments. In water and internal waves the classical equations are reformulated as a system of coupled equations where the free surface equations are formulated as nonlocal equation and the depth variable is eliminated. These systems reduce to interesting asymptotic equations in suitable limits. A numerical method, termed spectral renormalization, is used to find solitary waves in nonlinear optics, water waves and multi-fluid systems.
Citation: Mark J. Ablowitz, Terry S. Haut, Theodoros P. Horikis, Sean D. Nixon, Yi Zhu. Nonlinear wave dynamics: From lasers to fluids. Discrete and Continuous Dynamical Systems - S, 2011, 4 (5) : 923-955. doi: 10.3934/dcdss.2011.4.923
References:
[1]

M. J. Ablowitz and G. Biondini, Multiscale pulse dynamics in communication systems with strong dispersion management, Opt. Lett., 23 (1998), 1668-1670. doi: 10.1364/OL.23.001668.

[2]

M. J. Ablowitz, G. Biondini and E. Olson, On the evolution and interaction of dispersion-managed solitons, in "Massive WDM and TDM Soliton Transmission Systems" (Kyoto, Japan), Kluwer Academic Publishers, (2000), 362-367.

[3]

M. J. Ablowitz, A. S. Fokas and Z. Musslimani, On a new non-local formulation of water waves, J. Fluid Mech., 562 (2006), 313-343. doi: 10.1017/S0022112006001091.

[4]

M. J. Ablowitz and T. S. Haut, Asymptotic expansions for solitary gravity-capillary waves in two and three dimensions, Proc. Roy. Soc. A, 465 (2009), 2725-2749. doi: 10.1098/rspa.2009.0112.

[5]

M. J. Ablowitz and T. P. Horikis, Pulse dynamics and solitons in mode-locked lasers, Phys. Rev. A, 78 (2008), 011802(R). doi: 10.1103/PhysRevA.78.011802.

[6]

M. J. Ablowitz and T. P. Horikis, Solitons and spectral renormalization methods in nonlinear optics, Eur. Phys. J. Special Topics, 173 (2009), 147-166. doi: 10.1140/epjst/e2009-01072-0.

[7]

M. J. Ablowitz and T. P. Horikis, Solitons in normally dispersive mode-locked lasers, Phys. Rev. A, 79 (2009), 063845. doi: 10.1103/PhysRevA.79.063845.

[8]

M. J. Ablowitz, T. P. Horikis and B. Ilan, Solitons in dispersion-managed mode-locked lasers, Phys. Rev. A, 77 (2008), 033814. doi: 10.1103/PhysRevA.77.033814.

[9]

M. J. Ablowitz, T. P. Horikis and S. D. Nixon, Soliton strings and interactions in mode-locked lasers, Opt. Comm., 282 (2009), 4127-4135. doi: 10.1016/j.optcom.2009.07.005.

[10]

M. J. Ablowitz, T. P. Horikis, S. D. Nixon and Y. Zhu, Asymptotic analysis of pulse dynamics in mode-locked lasers, Stud. Appl. Math., 122 (2009), 411-425. doi: 10.1111/j.1467-9590.2009.00441.x.

[11]

M. J. Ablowitz, B. Ilan, E. Schonbrun and R. Piestun, Solitons in two-dimensional lattices possessing defects, dislocations, and quasicrystal structures, Phys. Rev. E, 74 (2006), 023623.

[12]

M. J. Ablowitz and Z. Musslimani, Discrete spatial solitons in a diffraction-managed nonlinear waveguide array: A unified approach, Physica D, 184 (2003), 276-303. doi: 10.1016/S0167-2789(03)00226-4.

[13]

M. J. Ablowitz and Z. Musslimani, Spectral renormalization method for computing self-localized solutions to nonlinear systems, Opt. Lett., 30 (2005), 2140-2142. doi: 10.1364/OL.30.002140.

[14]

M. J. Ablowitz, S. D. Nixon and Y. Zhu, Conical diffraction in honeycomb lattices, Phys. Rev. A, 79 (2009), 053830. doi: 10.1103/PhysRevA.79.053830.

[15]

M. J. Ablowitz and H. Segur, "Solitons and the Inverse Scattering Transform," SIAM Publications, Philadelphia, 1981.

[16]

G. P. Agrawal, "Nonlinear Fiber Optics," Academic Press, New York, 2001.

[17]

N. N. Akhmediev and A. Ankiewicz, "Solitons, Nonlinear Pulses and Beams," Chapman & Hall, 1997.

[18]

N. N. Akhmediev, J. M. Soto-Crespo and G. Town, Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: Complex Ginzburg-Landau equation approach, Phys. Rev. E, 63 (2001), 056602. doi: 10.1103/PhysRevE.63.056602.

[19]

D. J. Benney and J. C. Luke, On the interactions of permanent waves of finite amplitude, J. Math. Phys., 43 (1964), 309-313.

[20]

M. V. Berry and M. R. Jeffrey, Conical diffraction: Hamilton's diabolical point at the heart of crystal optics, Progress in Optics, 50 (2007), 13-50. doi: 10.1016/S0079-6638(07)50002-8.

[21]

J. Boussinesq, Essai sur la théorie des eaux courantes, Mémoires Présentés par Divers Savants à l'Académie des Sciences, 1 (1877), 1-680.

[22]

R. W. Boyd, "Nonlinear Optics," Elsevier, London, 2002.

[23]

R. Carretero-González, D. J. Frantzeskakis and P. G. Kevrekidis, Nonlinear waves in Bose-Einstein condensates: Physical relevance and mathematical techniques, Nonlinearity, 21 (2008), R139-R202. doi: 10.1088/0951-7715/21/7/R01.

[24]

Z. G. Chen, A. Bezryadina, I. Makasyuk and J. K. Yang, Observation of two-dimensional lattice vector solitons, Opt. Lett., 29 (2004), 1656-1658. doi: 10.1364/OL.29.001656.

[25]

A. Chong, W. H. Renninger and F. W. Wise, Observation of antisymmetric dispersion-managed solitons in a mode-locked laser, Opt. Lett., 33 (2008), 1717-1719. doi: 10.1364/OL.33.001717.

[26]

A. Chong, W. H. Renninger and F. W. Wise, Properties of normal-dispersion femtosecond fiber lasers, J. Opt. Soc. Am. B, 25 (2008), 140-148. doi: 10.1364/JOSAB.25.000140.

[27]

D. N. Christodoulides and R. Joseph, Discrete self-focusing in nonlinear arrays of coupled wave-guides, Opt. Lett., 13 (1988), 794-796. doi: 10.1364/OL.13.000794.

[28]

W. Craig and M. D. Groves, Hamiltonian long-wave approximations to the water-wave problem, Wave Motion, 19 (1994), 367-389. doi: 10.1016/0165-2125(94)90003-5.

[29]

W. Craig and C. Sulem, Numerical simulation of gravity waves, J. Comp. Phys., 108 (1993), 73-83. doi: 10.1006/jcph.1993.1164.

[30]

S. Cundiff, J. Ye and J. Hall, Rulers of light, Scientific American, 298 (2008), 74-81. doi: 10.1038/scientificamerican0408-74.

[31]

S. T. Cundiff, Soliton dynamics in mode-locked lasers, Lect. Notes Phys., 661 (2005), 183-206. doi: 10.1007/10928028_8.

[32]

S. T. Cundiff, J. M. Soto-Crespo and N. N. Akhmediev, Experimental evidence for soliton explosions, Phys. Rev. Lett., 88 (2002), 073903. doi: 10.1103/PhysRevLett.88.073903.

[33]

J. W. Dold, An efficient surface-integral algorithm applied to unsteady gravity-waves, J. Comp. Phys., 103 (1992), 90-115. doi: 10.1016/0021-9991(92)90327-U.

[34]

N. K. Efremidis, J. Hudock, D. N. Christodoulides, J. W. Fleischer, O. Cohen and M. Segev, Two-dimenional optical lattice solitons, Phys. Rev. Lett., 91 (2003), 213906. doi: 10.1103/PhysRevLett.91.213906.

[35]

N. K. Efremidis, J. Hudock, D. N. Christodoulides, J. W. Fleischer, O. Cohen and M. Segev, Two-dimensional optical lattice solitons, Phys. Rev. Lett., 91 (2003), 213906. doi: 10.1103/PhysRevLett.91.213906.

[36]

N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer and M. Segev, Discrete solitons in photorefractive optically induced photonic lattices, Phys. Rev. E, 66 (2002), 046602. doi: 10.1103/PhysRevE.66.046602.

[37]

H. Eisenberg, Y. Silberberg, R. Morandotti, A. Boyd and J. Aitchison, Wannier functions analysis of the nonlinear Schrödinger equation with a periodic potential, Phys. Rev. Lett., 81 (1998), 3382-3386.

[38]

J. Fenton, A ninth-order solution for the solitary wave, J. Fluid Mech., 53 (1972), 257-271. doi: 10.1017/S002211207200014X.

[39]

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis and D. N. Christodoulides, Observation of discrete solitons in optically induced real time waveguide arrays, Phys. Rev. Lett., 90 (2003), 023902. doi: 10.1103/PhysRevLett.90.023902.

[40]

J. W. Fleischer, M. Segev, N. K. Efremidis and D. N. Christodoulides, Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices, Nature, 422 (2003), 147-150. doi: 10.1038/nature01452.

[41]

B. Fornberg, A numerical method for conformal-mappings, SIAM J. Sci. Stat. Comput., 1 (1980), 386-400. doi: 10.1137/0901027.

[42]

B. Freedman, G. Bartal, M. Segev, R. Lifshitz, D. N. Christodoulides and J. W. Fleischer, Wave and defect dynamics in nonlinear photonic quasicrystals, Nature, 440 (2006), 1166-1169. doi: 10.1038/nature04722.

[43]

H. A. Haus, Theory of mode locking with a fast saturable absorber, J. Appl. Plys., 46 (1975), 3049-3058. doi: 10.1063/1.321997.

[44]

H. A. Haus, J. G. Fujimoto and E. P. Ippen, Analytic theory of additive pulse and Kerr lens mode locking, IEEE J. Quant. Elec., 28 (1992), 2086-2096. doi: 10.1109/3.159519.

[45]

T. S. Haut, "Nonlocal Formulations of Ideal Fluids and Applications," Ph.D. Thesis, University of Colorado, Boulder, 2008.

[46]

F. Ö. Ilday, J. R. Buckley, W. G. Clark and F. W. Wise, Self-similar evolution of parabolic pulses in a laser, Phys. Rev. Lett., 92 (2004), 213901. doi: 10.1103/PhysRevLett.92.213902.

[47]

F. Ö. Ilday, F. W. Wise and F. X. Kaertner, Possibility of self-similar pulse evolution in a Ti:sapphire laser, Opt. Express, 12 (2004), 2731-2738. doi: 10.1364/OPEX.12.002731.

[48]

T. Kapitula, J. N. Kutz and B. Sandstede, Stability of pulses in the master mode-locking equation, J. Opt. Soc. Am. B, 19 (2002), 740-746. doi: 10.1364/JOSAB.19.000740.

[49]

V. I. Karpman and V. V. Solov'ev, A perturbation theory for soliton systems, Physica D, 3 (1981), 142-164. doi: 10.1016/0167-2789(81)90123-8.

[50]

P. G. Kevrekidis, D. J. Frantzeskakis and R. Carretero-González (eds.), "Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment," Springer, 2007.

[51]

P. G. Kevrekidis, K. O. Rasmussen and A. R. Bishop, The discrete nonlinear Schrödinger equation: A survey of recent results, Int. J. Mod. Phys. B, 15 (2001), 2833-2900. doi: 10.1142/S0217979201007105.

[52]

Y. Kodama and M. J. Ablowitz, Perturbations of solitons and solitary waves, Stud. Appl. Math., 64 (1981), 225-245.

[53]

D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Phil. Mag., 39 (1895), 422-443.

[54]

J. N. Kutz, Mode-locked soliton lasers, SIAM Rev., 48 (2006), 629-678. doi: 10.1137/S0036144504446357.

[55]

T. I. Lakoba and J. K. Yang, A generalized Petviashvili iteration method for scalar and vector Hamiltonian equations with arbitrary form of nonlinearity, J. Comp. Phys., 226 (2007), 1668-1692. doi: 10.1016/j.jcp.2007.06.009.

[56]

H. Lamb, "Hydrodynamics," Dover Publications, New York, 1932.

[57]

M. S. Longuet-Higgens and E. D. Cokelet, The deformation of steep surface waves on water. I. A numerical method of computation, Proc. Roy. Soc. London A, 350 (1976), 1-26. doi: 10.1098/rspa.1976.0092.

[58]

M. S. Longuet-Higgins and J. Fenton, On the mass, momentum, energy, and circulation of a solitary wave, Proc. R. Soc. London A, 340 (1974), 471. doi: 10.1098/rspa.1974.0166.

[59]

D. N. Neshev, T. J. Alexander, E. A. Ostrovskaya, Y. S. Kivshar, I. Martin, H. Makasyuk and Z. G. Chen, Observation of discrete vortex solitons in optically induced photonic lattices, Phys. Rev. Lett., 92 (2004), 123903. doi: 10.1103/PhysRevLett.92.123903.

[60]

O. Peleg, G. Bartal, B. Freedman, O. Manela, M. Segev and D. N. Christodoulides, Conical diffraction and gap solitons in honeycomb photonic lattices, Phys. Rev. Lett., 98 (2007), 103901. doi: 10.1103/PhysRevLett.98.103901.

[61]

D. E. Pelinovsky and Y. A. Stepanyants, Convergence of Petviashvili's iteration method for numerical approximation of stationary solutions of nonlinear wave equations, SIAM J. Numer. Anal., 42 (2004), 1110-1127. doi: 10.1137/S0036142902414232.

[62]

N. Perrone and R. Kao, A general nonlinear relaxation iteration technique for solving nonlinear problems in mechanics, Trans. ASME. Ser. E. J. Appl. Mech., 38 (1971), 371-376. doi: 10.1115/1.3408785.

[63]

V. I. Petviashvili, Equation of an extraordinary soliton, Sov. J. Plasma Phys., 2 (1976), 257-258.

[64]

J. S. Russell, "Report on Waves," Report of the 14th meeting of the British Association, John Murray, London, (1845), 311-390.

[65]

Z. Shi and J. K. Yang, Solitary waves bifurcated from Bloch-band edges in two-dimesional periodic media, Phys. Rev. E, 75 (2007), 056602. doi: 10.1103/PhysRevE.75.056602.

[66]

J. E. Sipe and H. G. Winful, Nonlinear Schrödinger solitons in a periodic structure, Opt. Lett., 13 (1988), 132-133. doi: 10.1364/OL.13.000132.

[67]

M. Skorobogatiy and J. Yang, "Fundamentals of Photonic Crystal Guiding," Cambridge, 2009.

[68]

J. J. Stoker, "Water Waves, The Mathematical Theory with Applications," John Wiley and Sons, New York, 1958.

[69]

D. Y. Tang, W. S. Man, H. Y. Tam and P. D. Drummond, Observation of bound states of solitons in a passively mode-locked fiber laser, Phys. Rev. A, 64 (2001), 033814. doi: 10.1103/PhysRevA.64.033814.

[70]

P. R. Wallace, The band theory of graphite, Phys. Rev., 71 (1947), 622. doi: 10.1103/PhysRev.71.622.

[71]

X. Wang, Z. Chen, J. Wang and J. K. Yang, Observation of in-band lattice solitons, Phys. Rev. Lett., 99 (2007), 243901. doi: 10.1103/PhysRevLett.99.243901.

[72]

J. K. Yang and T. I. Lakoba, Universally-convergent squared-operator iteration methods for solitary waves in general nonlinear wave equations, Stud. Appl. Math., 118 (2007), 153-197. doi: 10.1111/j.1467-9590.2007.00371.x.

[73]

J. K. Yang, I. Makasyuk, A. Bezryadina and Z. Chen, Dipole solitons in optically induced two-dimensional photonic lattices, Opt. Lett., 29 (2004), 1662-1664. doi: 10.1364/OL.29.001662.

[74]

V. E. Zakharov, A. I. Dyachenko and O. A. Vasilyev, New method for numerical simulation of a nonstationary potential flow of incompressible fluid with a free surface, Eur. J. Mech. B/Fluids, 21 (2002), 283-291. doi: 10.1016/S0997-7546(02)01189-5.

[75]

Y. Zhu and J. Yang, Universal fractal structures in the weak interaction of solitary waves in generalized nonlinear Schrödinger equations, Phys. Rev. E, 75 (2007), 036605. doi: 10.1103/PhysRevE.75.036605.

show all references

References:
[1]

M. J. Ablowitz and G. Biondini, Multiscale pulse dynamics in communication systems with strong dispersion management, Opt. Lett., 23 (1998), 1668-1670. doi: 10.1364/OL.23.001668.

[2]

M. J. Ablowitz, G. Biondini and E. Olson, On the evolution and interaction of dispersion-managed solitons, in "Massive WDM and TDM Soliton Transmission Systems" (Kyoto, Japan), Kluwer Academic Publishers, (2000), 362-367.

[3]

M. J. Ablowitz, A. S. Fokas and Z. Musslimani, On a new non-local formulation of water waves, J. Fluid Mech., 562 (2006), 313-343. doi: 10.1017/S0022112006001091.

[4]

M. J. Ablowitz and T. S. Haut, Asymptotic expansions for solitary gravity-capillary waves in two and three dimensions, Proc. Roy. Soc. A, 465 (2009), 2725-2749. doi: 10.1098/rspa.2009.0112.

[5]

M. J. Ablowitz and T. P. Horikis, Pulse dynamics and solitons in mode-locked lasers, Phys. Rev. A, 78 (2008), 011802(R). doi: 10.1103/PhysRevA.78.011802.

[6]

M. J. Ablowitz and T. P. Horikis, Solitons and spectral renormalization methods in nonlinear optics, Eur. Phys. J. Special Topics, 173 (2009), 147-166. doi: 10.1140/epjst/e2009-01072-0.

[7]

M. J. Ablowitz and T. P. Horikis, Solitons in normally dispersive mode-locked lasers, Phys. Rev. A, 79 (2009), 063845. doi: 10.1103/PhysRevA.79.063845.

[8]

M. J. Ablowitz, T. P. Horikis and B. Ilan, Solitons in dispersion-managed mode-locked lasers, Phys. Rev. A, 77 (2008), 033814. doi: 10.1103/PhysRevA.77.033814.

[9]

M. J. Ablowitz, T. P. Horikis and S. D. Nixon, Soliton strings and interactions in mode-locked lasers, Opt. Comm., 282 (2009), 4127-4135. doi: 10.1016/j.optcom.2009.07.005.

[10]

M. J. Ablowitz, T. P. Horikis, S. D. Nixon and Y. Zhu, Asymptotic analysis of pulse dynamics in mode-locked lasers, Stud. Appl. Math., 122 (2009), 411-425. doi: 10.1111/j.1467-9590.2009.00441.x.

[11]

M. J. Ablowitz, B. Ilan, E. Schonbrun and R. Piestun, Solitons in two-dimensional lattices possessing defects, dislocations, and quasicrystal structures, Phys. Rev. E, 74 (2006), 023623.

[12]

M. J. Ablowitz and Z. Musslimani, Discrete spatial solitons in a diffraction-managed nonlinear waveguide array: A unified approach, Physica D, 184 (2003), 276-303. doi: 10.1016/S0167-2789(03)00226-4.

[13]

M. J. Ablowitz and Z. Musslimani, Spectral renormalization method for computing self-localized solutions to nonlinear systems, Opt. Lett., 30 (2005), 2140-2142. doi: 10.1364/OL.30.002140.

[14]

M. J. Ablowitz, S. D. Nixon and Y. Zhu, Conical diffraction in honeycomb lattices, Phys. Rev. A, 79 (2009), 053830. doi: 10.1103/PhysRevA.79.053830.

[15]

M. J. Ablowitz and H. Segur, "Solitons and the Inverse Scattering Transform," SIAM Publications, Philadelphia, 1981.

[16]

G. P. Agrawal, "Nonlinear Fiber Optics," Academic Press, New York, 2001.

[17]

N. N. Akhmediev and A. Ankiewicz, "Solitons, Nonlinear Pulses and Beams," Chapman & Hall, 1997.

[18]

N. N. Akhmediev, J. M. Soto-Crespo and G. Town, Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: Complex Ginzburg-Landau equation approach, Phys. Rev. E, 63 (2001), 056602. doi: 10.1103/PhysRevE.63.056602.

[19]

D. J. Benney and J. C. Luke, On the interactions of permanent waves of finite amplitude, J. Math. Phys., 43 (1964), 309-313.

[20]

M. V. Berry and M. R. Jeffrey, Conical diffraction: Hamilton's diabolical point at the heart of crystal optics, Progress in Optics, 50 (2007), 13-50. doi: 10.1016/S0079-6638(07)50002-8.

[21]

J. Boussinesq, Essai sur la théorie des eaux courantes, Mémoires Présentés par Divers Savants à l'Académie des Sciences, 1 (1877), 1-680.

[22]

R. W. Boyd, "Nonlinear Optics," Elsevier, London, 2002.

[23]

R. Carretero-González, D. J. Frantzeskakis and P. G. Kevrekidis, Nonlinear waves in Bose-Einstein condensates: Physical relevance and mathematical techniques, Nonlinearity, 21 (2008), R139-R202. doi: 10.1088/0951-7715/21/7/R01.

[24]

Z. G. Chen, A. Bezryadina, I. Makasyuk and J. K. Yang, Observation of two-dimensional lattice vector solitons, Opt. Lett., 29 (2004), 1656-1658. doi: 10.1364/OL.29.001656.

[25]

A. Chong, W. H. Renninger and F. W. Wise, Observation of antisymmetric dispersion-managed solitons in a mode-locked laser, Opt. Lett., 33 (2008), 1717-1719. doi: 10.1364/OL.33.001717.

[26]

A. Chong, W. H. Renninger and F. W. Wise, Properties of normal-dispersion femtosecond fiber lasers, J. Opt. Soc. Am. B, 25 (2008), 140-148. doi: 10.1364/JOSAB.25.000140.

[27]

D. N. Christodoulides and R. Joseph, Discrete self-focusing in nonlinear arrays of coupled wave-guides, Opt. Lett., 13 (1988), 794-796. doi: 10.1364/OL.13.000794.

[28]

W. Craig and M. D. Groves, Hamiltonian long-wave approximations to the water-wave problem, Wave Motion, 19 (1994), 367-389. doi: 10.1016/0165-2125(94)90003-5.

[29]

W. Craig and C. Sulem, Numerical simulation of gravity waves, J. Comp. Phys., 108 (1993), 73-83. doi: 10.1006/jcph.1993.1164.

[30]

S. Cundiff, J. Ye and J. Hall, Rulers of light, Scientific American, 298 (2008), 74-81. doi: 10.1038/scientificamerican0408-74.

[31]

S. T. Cundiff, Soliton dynamics in mode-locked lasers, Lect. Notes Phys., 661 (2005), 183-206. doi: 10.1007/10928028_8.

[32]

S. T. Cundiff, J. M. Soto-Crespo and N. N. Akhmediev, Experimental evidence for soliton explosions, Phys. Rev. Lett., 88 (2002), 073903. doi: 10.1103/PhysRevLett.88.073903.

[33]

J. W. Dold, An efficient surface-integral algorithm applied to unsteady gravity-waves, J. Comp. Phys., 103 (1992), 90-115. doi: 10.1016/0021-9991(92)90327-U.

[34]

N. K. Efremidis, J. Hudock, D. N. Christodoulides, J. W. Fleischer, O. Cohen and M. Segev, Two-dimenional optical lattice solitons, Phys. Rev. Lett., 91 (2003), 213906. doi: 10.1103/PhysRevLett.91.213906.

[35]

N. K. Efremidis, J. Hudock, D. N. Christodoulides, J. W. Fleischer, O. Cohen and M. Segev, Two-dimensional optical lattice solitons, Phys. Rev. Lett., 91 (2003), 213906. doi: 10.1103/PhysRevLett.91.213906.

[36]

N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer and M. Segev, Discrete solitons in photorefractive optically induced photonic lattices, Phys. Rev. E, 66 (2002), 046602. doi: 10.1103/PhysRevE.66.046602.

[37]

H. Eisenberg, Y. Silberberg, R. Morandotti, A. Boyd and J. Aitchison, Wannier functions analysis of the nonlinear Schrödinger equation with a periodic potential, Phys. Rev. Lett., 81 (1998), 3382-3386.

[38]

J. Fenton, A ninth-order solution for the solitary wave, J. Fluid Mech., 53 (1972), 257-271. doi: 10.1017/S002211207200014X.

[39]

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis and D. N. Christodoulides, Observation of discrete solitons in optically induced real time waveguide arrays, Phys. Rev. Lett., 90 (2003), 023902. doi: 10.1103/PhysRevLett.90.023902.

[40]

J. W. Fleischer, M. Segev, N. K. Efremidis and D. N. Christodoulides, Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices, Nature, 422 (2003), 147-150. doi: 10.1038/nature01452.

[41]

B. Fornberg, A numerical method for conformal-mappings, SIAM J. Sci. Stat. Comput., 1 (1980), 386-400. doi: 10.1137/0901027.

[42]

B. Freedman, G. Bartal, M. Segev, R. Lifshitz, D. N. Christodoulides and J. W. Fleischer, Wave and defect dynamics in nonlinear photonic quasicrystals, Nature, 440 (2006), 1166-1169. doi: 10.1038/nature04722.

[43]

H. A. Haus, Theory of mode locking with a fast saturable absorber, J. Appl. Plys., 46 (1975), 3049-3058. doi: 10.1063/1.321997.

[44]

H. A. Haus, J. G. Fujimoto and E. P. Ippen, Analytic theory of additive pulse and Kerr lens mode locking, IEEE J. Quant. Elec., 28 (1992), 2086-2096. doi: 10.1109/3.159519.

[45]

T. S. Haut, "Nonlocal Formulations of Ideal Fluids and Applications," Ph.D. Thesis, University of Colorado, Boulder, 2008.

[46]

F. Ö. Ilday, J. R. Buckley, W. G. Clark and F. W. Wise, Self-similar evolution of parabolic pulses in a laser, Phys. Rev. Lett., 92 (2004), 213901. doi: 10.1103/PhysRevLett.92.213902.

[47]

F. Ö. Ilday, F. W. Wise and F. X. Kaertner, Possibility of self-similar pulse evolution in a Ti:sapphire laser, Opt. Express, 12 (2004), 2731-2738. doi: 10.1364/OPEX.12.002731.

[48]

T. Kapitula, J. N. Kutz and B. Sandstede, Stability of pulses in the master mode-locking equation, J. Opt. Soc. Am. B, 19 (2002), 740-746. doi: 10.1364/JOSAB.19.000740.

[49]

V. I. Karpman and V. V. Solov'ev, A perturbation theory for soliton systems, Physica D, 3 (1981), 142-164. doi: 10.1016/0167-2789(81)90123-8.

[50]

P. G. Kevrekidis, D. J. Frantzeskakis and R. Carretero-González (eds.), "Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment," Springer, 2007.

[51]

P. G. Kevrekidis, K. O. Rasmussen and A. R. Bishop, The discrete nonlinear Schrödinger equation: A survey of recent results, Int. J. Mod. Phys. B, 15 (2001), 2833-2900. doi: 10.1142/S0217979201007105.

[52]

Y. Kodama and M. J. Ablowitz, Perturbations of solitons and solitary waves, Stud. Appl. Math., 64 (1981), 225-245.

[53]

D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Phil. Mag., 39 (1895), 422-443.

[54]

J. N. Kutz, Mode-locked soliton lasers, SIAM Rev., 48 (2006), 629-678. doi: 10.1137/S0036144504446357.

[55]

T. I. Lakoba and J. K. Yang, A generalized Petviashvili iteration method for scalar and vector Hamiltonian equations with arbitrary form of nonlinearity, J. Comp. Phys., 226 (2007), 1668-1692. doi: 10.1016/j.jcp.2007.06.009.

[56]

H. Lamb, "Hydrodynamics," Dover Publications, New York, 1932.

[57]

M. S. Longuet-Higgens and E. D. Cokelet, The deformation of steep surface waves on water. I. A numerical method of computation, Proc. Roy. Soc. London A, 350 (1976), 1-26. doi: 10.1098/rspa.1976.0092.

[58]

M. S. Longuet-Higgins and J. Fenton, On the mass, momentum, energy, and circulation of a solitary wave, Proc. R. Soc. London A, 340 (1974), 471. doi: 10.1098/rspa.1974.0166.

[59]

D. N. Neshev, T. J. Alexander, E. A. Ostrovskaya, Y. S. Kivshar, I. Martin, H. Makasyuk and Z. G. Chen, Observation of discrete vortex solitons in optically induced photonic lattices, Phys. Rev. Lett., 92 (2004), 123903. doi: 10.1103/PhysRevLett.92.123903.

[60]

O. Peleg, G. Bartal, B. Freedman, O. Manela, M. Segev and D. N. Christodoulides, Conical diffraction and gap solitons in honeycomb photonic lattices, Phys. Rev. Lett., 98 (2007), 103901. doi: 10.1103/PhysRevLett.98.103901.

[61]

D. E. Pelinovsky and Y. A. Stepanyants, Convergence of Petviashvili's iteration method for numerical approximation of stationary solutions of nonlinear wave equations, SIAM J. Numer. Anal., 42 (2004), 1110-1127. doi: 10.1137/S0036142902414232.

[62]

N. Perrone and R. Kao, A general nonlinear relaxation iteration technique for solving nonlinear problems in mechanics, Trans. ASME. Ser. E. J. Appl. Mech., 38 (1971), 371-376. doi: 10.1115/1.3408785.

[63]

V. I. Petviashvili, Equation of an extraordinary soliton, Sov. J. Plasma Phys., 2 (1976), 257-258.

[64]

J. S. Russell, "Report on Waves," Report of the 14th meeting of the British Association, John Murray, London, (1845), 311-390.

[65]

Z. Shi and J. K. Yang, Solitary waves bifurcated from Bloch-band edges in two-dimesional periodic media, Phys. Rev. E, 75 (2007), 056602. doi: 10.1103/PhysRevE.75.056602.

[66]

J. E. Sipe and H. G. Winful, Nonlinear Schrödinger solitons in a periodic structure, Opt. Lett., 13 (1988), 132-133. doi: 10.1364/OL.13.000132.

[67]

M. Skorobogatiy and J. Yang, "Fundamentals of Photonic Crystal Guiding," Cambridge, 2009.

[68]

J. J. Stoker, "Water Waves, The Mathematical Theory with Applications," John Wiley and Sons, New York, 1958.

[69]

D. Y. Tang, W. S. Man, H. Y. Tam and P. D. Drummond, Observation of bound states of solitons in a passively mode-locked fiber laser, Phys. Rev. A, 64 (2001), 033814. doi: 10.1103/PhysRevA.64.033814.

[70]

P. R. Wallace, The band theory of graphite, Phys. Rev., 71 (1947), 622. doi: 10.1103/PhysRev.71.622.

[71]

X. Wang, Z. Chen, J. Wang and J. K. Yang, Observation of in-band lattice solitons, Phys. Rev. Lett., 99 (2007), 243901. doi: 10.1103/PhysRevLett.99.243901.

[72]

J. K. Yang and T. I. Lakoba, Universally-convergent squared-operator iteration methods for solitary waves in general nonlinear wave equations, Stud. Appl. Math., 118 (2007), 153-197. doi: 10.1111/j.1467-9590.2007.00371.x.

[73]

J. K. Yang, I. Makasyuk, A. Bezryadina and Z. Chen, Dipole solitons in optically induced two-dimensional photonic lattices, Opt. Lett., 29 (2004), 1662-1664. doi: 10.1364/OL.29.001662.

[74]

V. E. Zakharov, A. I. Dyachenko and O. A. Vasilyev, New method for numerical simulation of a nonstationary potential flow of incompressible fluid with a free surface, Eur. J. Mech. B/Fluids, 21 (2002), 283-291. doi: 10.1016/S0997-7546(02)01189-5.

[75]

Y. Zhu and J. Yang, Universal fractal structures in the weak interaction of solitary waves in generalized nonlinear Schrödinger equations, Phys. Rev. E, 75 (2007), 036605. doi: 10.1103/PhysRevE.75.036605.

[1]

Nasim Ullah, Ahmad Aziz Al-Ahmadi. A triple mode robust sliding mode controller for a nonlinear system with measurement noise and uncertainty. Mathematical Foundations of Computing, 2020, 3 (2) : 81-99. doi: 10.3934/mfc.2020007

[2]

Denis Gaidashev, Tomas Johnson. Spectral properties of renormalization for area-preserving maps. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3651-3675. doi: 10.3934/dcds.2016.36.3651

[3]

Paul Loya and Jinsung Park. On gluing formulas for the spectral invariants of Dirac type operators. Electronic Research Announcements, 2005, 11: 1-11.

[4]

Maria J. Esteban, Eric Séré. An overview on linear and nonlinear Dirac equations. Discrete and Continuous Dynamical Systems, 2002, 8 (2) : 381-397. doi: 10.3934/dcds.2002.8.381

[5]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[6]

Xu Zhang. On the concentration of semiclassical states for nonlinear Dirac equations. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5389-5413. doi: 10.3934/dcds.2018238

[7]

Xiaoyan Lin, Xianhua Tang. Solutions of nonlinear periodic Dirac equations with periodic potentials. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 2051-2061. doi: 10.3934/dcdss.2019132

[8]

Yu Chen, Yanheng Ding, Tian Xu. Potential well and multiplicity of solutions for nonlinear Dirac equations. Communications on Pure and Applied Analysis, 2020, 19 (1) : 587-607. doi: 10.3934/cpaa.2020028

[9]

Tomás Caraballo, Francisco Morillas, José Valero. Asymptotic behaviour of a logistic lattice system. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 4019-4037. doi: 10.3934/dcds.2014.34.4019

[10]

H. Merdan, G. Caginalp. Decay of solutions to nonlinear parabolic equations: renormalization and rigorous results. Discrete and Continuous Dynamical Systems - B, 2003, 3 (4) : 565-588. doi: 10.3934/dcdsb.2003.3.565

[11]

Nabile Boussïd, Andrew Comech. Spectral stability of bi-frequency solitary waves in Soler and Dirac-Klein-Gordon models. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1331-1347. doi: 10.3934/cpaa.2018065

[12]

Jáuber Cavalcante Oliveira, Jardel Morais Pereira, Gustavo Perla Menzala. Long time dynamics of a multidimensional nonlinear lattice with memory. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2715-2732. doi: 10.3934/dcdsb.2015.20.2715

[13]

Jonathan E. Rubin, Justyna Signerska-Rynkowska, Jonathan D. Touboul, Alexandre Vidal. Wild oscillations in a nonlinear neuron model with resets: (Ⅱ) Mixed-mode oscillations. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 4003-4039. doi: 10.3934/dcdsb.2017205

[14]

Hartmut Pecher. Local well-posedness for the nonlinear Dirac equation in two space dimensions. Communications on Pure and Applied Analysis, 2014, 13 (2) : 673-685. doi: 10.3934/cpaa.2014.13.673

[15]

Hyungjin Huh. Self-similar solutions to nonlinear Dirac equations and an application to nonuniqueness. Evolution Equations and Control Theory, 2018, 7 (1) : 53-60. doi: 10.3934/eect.2018003

[16]

Andrew Comech, David Stuart. Small amplitude solitary waves in the Dirac-Maxwell system. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1349-1370. doi: 10.3934/cpaa.2018066

[17]

Mikhail I. Belishev, Sergey A. Simonov. A canonical model of the one-dimensional dynamical Dirac system with boundary control. Evolution Equations and Control Theory, 2022, 11 (1) : 283-300. doi: 10.3934/eect.2021003

[18]

Hartmut Pecher. Local well-posedness for the Maxwell-Dirac system in temporal gauge. Discrete and Continuous Dynamical Systems, 2022, 42 (6) : 3065-3076. doi: 10.3934/dcds.2022008

[19]

G. A. Braga, Frederico Furtado, Jussara M. Moreira, Leonardo T. Rolla. Renormalization group analysis of nonlinear diffusion equations with time dependent coefficients: Analytical results. Discrete and Continuous Dynamical Systems - B, 2007, 7 (4) : 699-715. doi: 10.3934/dcdsb.2007.7.699

[20]

Wilhelm Schlag. Spectral theory and nonlinear partial differential equations: A survey. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 703-723. doi: 10.3934/dcds.2006.15.703

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (107)
  • HTML views (0)
  • Cited by (0)

[Back to Top]