October  2011, 4(5): 923-955. doi: 10.3934/dcdss.2011.4.923

Nonlinear wave dynamics: From lasers to fluids

1. 

Department of Applied Mathematics, University of Colorado, Boulder, CO 80309-0526, United States, United States, United States, United States

2. 

Department of Mathematics, University of Ioannina, Ioannina 45110, Greece

Received  September 2009 Revised  December 2009 Published  December 2010

Nonlinear wave equations are central to the study of nonlinear optics and fluid dynamics. Notably, recent research has shown that solitons can be generated in mode-locked lasers. An interesting application of these lasers is the development of optical clocks which have the potential to be considerably more accurate than atomic clocks. Another important area of research in nonlinear optics is lattice dynamics where localized solitary wave or solitons can be obtained in periodic and irregular lattice systems. In honeycomb lattices, discrete and continuous nonlinear Dirac systems can be derived in certain parameter regimes; the Dirac systems describe conical diffraction, a phenomena observed in recent experiments. In water and internal waves the classical equations are reformulated as a system of coupled equations where the free surface equations are formulated as nonlocal equation and the depth variable is eliminated. These systems reduce to interesting asymptotic equations in suitable limits. A numerical method, termed spectral renormalization, is used to find solitary waves in nonlinear optics, water waves and multi-fluid systems.
Citation: Mark J. Ablowitz, Terry S. Haut, Theodoros P. Horikis, Sean D. Nixon, Yi Zhu. Nonlinear wave dynamics: From lasers to fluids. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 923-955. doi: 10.3934/dcdss.2011.4.923
References:
[1]

M. J. Ablowitz and G. Biondini, Multiscale pulse dynamics in communication systems with strong dispersion management,, Opt. Lett., 23 (1998), 1668.  doi: 10.1364/OL.23.001668.  Google Scholar

[2]

M. J. Ablowitz, G. Biondini and E. Olson, On the evolution and interaction of dispersion-managed solitons,, in, (2000), 362.   Google Scholar

[3]

M. J. Ablowitz, A. S. Fokas and Z. Musslimani, On a new non-local formulation of water waves,, J. Fluid Mech., 562 (2006), 313.  doi: 10.1017/S0022112006001091.  Google Scholar

[4]

M. J. Ablowitz and T. S. Haut, Asymptotic expansions for solitary gravity-capillary waves in two and three dimensions,, Proc. Roy. Soc. A, 465 (2009), 2725.  doi: 10.1098/rspa.2009.0112.  Google Scholar

[5]

M. J. Ablowitz and T. P. Horikis, Pulse dynamics and solitons in mode-locked lasers,, Phys. Rev. A, 78 (2008).  doi: 10.1103/PhysRevA.78.011802.  Google Scholar

[6]

M. J. Ablowitz and T. P. Horikis, Solitons and spectral renormalization methods in nonlinear optics,, Eur. Phys. J. Special Topics, 173 (2009), 147.  doi: 10.1140/epjst/e2009-01072-0.  Google Scholar

[7]

M. J. Ablowitz and T. P. Horikis, Solitons in normally dispersive mode-locked lasers,, Phys. Rev. A, 79 (2009).  doi: 10.1103/PhysRevA.79.063845.  Google Scholar

[8]

M. J. Ablowitz, T. P. Horikis and B. Ilan, Solitons in dispersion-managed mode-locked lasers,, Phys. Rev. A, 77 (2008).  doi: 10.1103/PhysRevA.77.033814.  Google Scholar

[9]

M. J. Ablowitz, T. P. Horikis and S. D. Nixon, Soliton strings and interactions in mode-locked lasers,, Opt. Comm., 282 (2009), 4127.  doi: 10.1016/j.optcom.2009.07.005.  Google Scholar

[10]

M. J. Ablowitz, T. P. Horikis, S. D. Nixon and Y. Zhu, Asymptotic analysis of pulse dynamics in mode-locked lasers,, Stud. Appl. Math., 122 (2009), 411.  doi: 10.1111/j.1467-9590.2009.00441.x.  Google Scholar

[11]

M. J. Ablowitz, B. Ilan, E. Schonbrun and R. Piestun, Solitons in two-dimensional lattices possessing defects, dislocations, and quasicrystal structures,, Phys. Rev. E, 74 (2006).   Google Scholar

[12]

M. J. Ablowitz and Z. Musslimani, Discrete spatial solitons in a diffraction-managed nonlinear waveguide array: A unified approach,, Physica D, 184 (2003), 276.  doi: 10.1016/S0167-2789(03)00226-4.  Google Scholar

[13]

M. J. Ablowitz and Z. Musslimani, Spectral renormalization method for computing self-localized solutions to nonlinear systems,, Opt. Lett., 30 (2005), 2140.  doi: 10.1364/OL.30.002140.  Google Scholar

[14]

M. J. Ablowitz, S. D. Nixon and Y. Zhu, Conical diffraction in honeycomb lattices,, Phys. Rev. A, 79 (2009).  doi: 10.1103/PhysRevA.79.053830.  Google Scholar

[15]

M. J. Ablowitz and H. Segur, "Solitons and the Inverse Scattering Transform,", SIAM Publications, (1981).   Google Scholar

[16]

G. P. Agrawal, "Nonlinear Fiber Optics,", Academic Press, (2001).   Google Scholar

[17]

N. N. Akhmediev and A. Ankiewicz, "Solitons, Nonlinear Pulses and Beams,", Chapman & Hall, (1997).   Google Scholar

[18]

N. N. Akhmediev, J. M. Soto-Crespo and G. Town, Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: Complex Ginzburg-Landau equation approach,, Phys. Rev. E, 63 (2001).  doi: 10.1103/PhysRevE.63.056602.  Google Scholar

[19]

D. J. Benney and J. C. Luke, On the interactions of permanent waves of finite amplitude,, J. Math. Phys., 43 (1964), 309.   Google Scholar

[20]

M. V. Berry and M. R. Jeffrey, Conical diffraction: Hamilton's diabolical point at the heart of crystal optics,, Progress in Optics, 50 (2007), 13.  doi: 10.1016/S0079-6638(07)50002-8.  Google Scholar

[21]

J. Boussinesq, Essai sur la théorie des eaux courantes,, Mémoires Présentés par Divers Savants à l'Académie des Sciences, 1 (1877), 1.   Google Scholar

[22]

R. W. Boyd, "Nonlinear Optics,", Elsevier, (2002).   Google Scholar

[23]

R. Carretero-González, D. J. Frantzeskakis and P. G. Kevrekidis, Nonlinear waves in Bose-Einstein condensates: Physical relevance and mathematical techniques,, Nonlinearity, 21 (2008).  doi: 10.1088/0951-7715/21/7/R01.  Google Scholar

[24]

Z. G. Chen, A. Bezryadina, I. Makasyuk and J. K. Yang, Observation of two-dimensional lattice vector solitons,, Opt. Lett., 29 (2004), 1656.  doi: 10.1364/OL.29.001656.  Google Scholar

[25]

A. Chong, W. H. Renninger and F. W. Wise, Observation of antisymmetric dispersion-managed solitons in a mode-locked laser,, Opt. Lett., 33 (2008), 1717.  doi: 10.1364/OL.33.001717.  Google Scholar

[26]

A. Chong, W. H. Renninger and F. W. Wise, Properties of normal-dispersion femtosecond fiber lasers,, J. Opt. Soc. Am. B, 25 (2008), 140.  doi: 10.1364/JOSAB.25.000140.  Google Scholar

[27]

D. N. Christodoulides and R. Joseph, Discrete self-focusing in nonlinear arrays of coupled wave-guides,, Opt. Lett., 13 (1988), 794.  doi: 10.1364/OL.13.000794.  Google Scholar

[28]

W. Craig and M. D. Groves, Hamiltonian long-wave approximations to the water-wave problem,, Wave Motion, 19 (1994), 367.  doi: 10.1016/0165-2125(94)90003-5.  Google Scholar

[29]

W. Craig and C. Sulem, Numerical simulation of gravity waves,, J. Comp. Phys., 108 (1993), 73.  doi: 10.1006/jcph.1993.1164.  Google Scholar

[30]

S. Cundiff, J. Ye and J. Hall, Rulers of light,, Scientific American, 298 (2008), 74.  doi: 10.1038/scientificamerican0408-74.  Google Scholar

[31]

S. T. Cundiff, Soliton dynamics in mode-locked lasers,, Lect. Notes Phys., 661 (2005), 183.  doi: 10.1007/10928028_8.  Google Scholar

[32]

S. T. Cundiff, J. M. Soto-Crespo and N. N. Akhmediev, Experimental evidence for soliton explosions,, Phys. Rev. Lett., 88 (2002).  doi: 10.1103/PhysRevLett.88.073903.  Google Scholar

[33]

J. W. Dold, An efficient surface-integral algorithm applied to unsteady gravity-waves,, J. Comp. Phys., 103 (1992), 90.  doi: 10.1016/0021-9991(92)90327-U.  Google Scholar

[34]

N. K. Efremidis, J. Hudock, D. N. Christodoulides, J. W. Fleischer, O. Cohen and M. Segev, Two-dimenional optical lattice solitons,, Phys. Rev. Lett., 91 (2003).  doi: 10.1103/PhysRevLett.91.213906.  Google Scholar

[35]

N. K. Efremidis, J. Hudock, D. N. Christodoulides, J. W. Fleischer, O. Cohen and M. Segev, Two-dimensional optical lattice solitons,, Phys. Rev. Lett., 91 (2003).  doi: 10.1103/PhysRevLett.91.213906.  Google Scholar

[36]

N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer and M. Segev, Discrete solitons in photorefractive optically induced photonic lattices,, Phys. Rev. E, 66 (2002).  doi: 10.1103/PhysRevE.66.046602.  Google Scholar

[37]

H. Eisenberg, Y. Silberberg, R. Morandotti, A. Boyd and J. Aitchison, Wannier functions analysis of the nonlinear Schrödinger equation with a periodic potential,, Phys. Rev. Lett., 81 (1998), 3382.   Google Scholar

[38]

J. Fenton, A ninth-order solution for the solitary wave,, J. Fluid Mech., 53 (1972), 257.  doi: 10.1017/S002211207200014X.  Google Scholar

[39]

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis and D. N. Christodoulides, Observation of discrete solitons in optically induced real time waveguide arrays,, Phys. Rev. Lett., 90 (2003).  doi: 10.1103/PhysRevLett.90.023902.  Google Scholar

[40]

J. W. Fleischer, M. Segev, N. K. Efremidis and D. N. Christodoulides, Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,, Nature, 422 (2003), 147.  doi: 10.1038/nature01452.  Google Scholar

[41]

B. Fornberg, A numerical method for conformal-mappings,, SIAM J. Sci. Stat. Comput., 1 (1980), 386.  doi: 10.1137/0901027.  Google Scholar

[42]

B. Freedman, G. Bartal, M. Segev, R. Lifshitz, D. N. Christodoulides and J. W. Fleischer, Wave and defect dynamics in nonlinear photonic quasicrystals,, Nature, 440 (2006), 1166.  doi: 10.1038/nature04722.  Google Scholar

[43]

H. A. Haus, Theory of mode locking with a fast saturable absorber,, J. Appl. Plys., 46 (1975), 3049.  doi: 10.1063/1.321997.  Google Scholar

[44]

H. A. Haus, J. G. Fujimoto and E. P. Ippen, Analytic theory of additive pulse and Kerr lens mode locking,, IEEE J. Quant. Elec., 28 (1992), 2086.  doi: 10.1109/3.159519.  Google Scholar

[45]

T. S. Haut, "Nonlocal Formulations of Ideal Fluids and Applications,", Ph.D. Thesis, (2008).   Google Scholar

[46]

F. Ö. Ilday, J. R. Buckley, W. G. Clark and F. W. Wise, Self-similar evolution of parabolic pulses in a laser,, Phys. Rev. Lett., 92 (2004).  doi: 10.1103/PhysRevLett.92.213902.  Google Scholar

[47]

F. Ö. Ilday, F. W. Wise and F. X. Kaertner, Possibility of self-similar pulse evolution in a Ti:sapphire laser,, Opt. Express, 12 (2004), 2731.  doi: 10.1364/OPEX.12.002731.  Google Scholar

[48]

T. Kapitula, J. N. Kutz and B. Sandstede, Stability of pulses in the master mode-locking equation,, J. Opt. Soc. Am. B, 19 (2002), 740.  doi: 10.1364/JOSAB.19.000740.  Google Scholar

[49]

V. I. Karpman and V. V. Solov'ev, A perturbation theory for soliton systems,, Physica D, 3 (1981), 142.  doi: 10.1016/0167-2789(81)90123-8.  Google Scholar

[50]

P. G. Kevrekidis, D. J. Frantzeskakis and R. Carretero-González (eds.), "Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment,", Springer, (2007).   Google Scholar

[51]

P. G. Kevrekidis, K. O. Rasmussen and A. R. Bishop, The discrete nonlinear Schrödinger equation: A survey of recent results,, Int. J. Mod. Phys. B, 15 (2001), 2833.  doi: 10.1142/S0217979201007105.  Google Scholar

[52]

Y. Kodama and M. J. Ablowitz, Perturbations of solitons and solitary waves,, Stud. Appl. Math., 64 (1981), 225.   Google Scholar

[53]

D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves,, Phil. Mag., 39 (1895), 422.   Google Scholar

[54]

J. N. Kutz, Mode-locked soliton lasers,, SIAM Rev., 48 (2006), 629.  doi: 10.1137/S0036144504446357.  Google Scholar

[55]

T. I. Lakoba and J. K. Yang, A generalized Petviashvili iteration method for scalar and vector Hamiltonian equations with arbitrary form of nonlinearity,, J. Comp. Phys., 226 (2007), 1668.  doi: 10.1016/j.jcp.2007.06.009.  Google Scholar

[56]

H. Lamb, "Hydrodynamics,", Dover Publications, (1932).   Google Scholar

[57]

M. S. Longuet-Higgens and E. D. Cokelet, The deformation of steep surface waves on water. I. A numerical method of computation,, Proc. Roy. Soc. London A, 350 (1976), 1.  doi: 10.1098/rspa.1976.0092.  Google Scholar

[58]

M. S. Longuet-Higgins and J. Fenton, On the mass, momentum, energy, and circulation of a solitary wave,, Proc. R. Soc. London A, 340 (1974).  doi: 10.1098/rspa.1974.0166.  Google Scholar

[59]

D. N. Neshev, T. J. Alexander, E. A. Ostrovskaya, Y. S. Kivshar, I. Martin, H. Makasyuk and Z. G. Chen, Observation of discrete vortex solitons in optically induced photonic lattices,, Phys. Rev. Lett., 92 (2004).  doi: 10.1103/PhysRevLett.92.123903.  Google Scholar

[60]

O. Peleg, G. Bartal, B. Freedman, O. Manela, M. Segev and D. N. Christodoulides, Conical diffraction and gap solitons in honeycomb photonic lattices,, Phys. Rev. Lett., 98 (2007).  doi: 10.1103/PhysRevLett.98.103901.  Google Scholar

[61]

D. E. Pelinovsky and Y. A. Stepanyants, Convergence of Petviashvili's iteration method for numerical approximation of stationary solutions of nonlinear wave equations,, SIAM J. Numer. Anal., 42 (2004), 1110.  doi: 10.1137/S0036142902414232.  Google Scholar

[62]

N. Perrone and R. Kao, A general nonlinear relaxation iteration technique for solving nonlinear problems in mechanics,, Trans. ASME. Ser. E. J. Appl. Mech., 38 (1971), 371.  doi: 10.1115/1.3408785.  Google Scholar

[63]

V. I. Petviashvili, Equation of an extraordinary soliton,, Sov. J. Plasma Phys., 2 (1976), 257.   Google Scholar

[64]

J. S. Russell, "Report on Waves,", Report of the 14th meeting of the British Association, (1845), 311.   Google Scholar

[65]

Z. Shi and J. K. Yang, Solitary waves bifurcated from Bloch-band edges in two-dimesional periodic media,, Phys. Rev. E, 75 (2007).  doi: 10.1103/PhysRevE.75.056602.  Google Scholar

[66]

J. E. Sipe and H. G. Winful, Nonlinear Schrödinger solitons in a periodic structure,, Opt. Lett., 13 (1988), 132.  doi: 10.1364/OL.13.000132.  Google Scholar

[67]

M. Skorobogatiy and J. Yang, "Fundamentals of Photonic Crystal Guiding,", Cambridge, (2009).   Google Scholar

[68]

J. J. Stoker, "Water Waves, The Mathematical Theory with Applications,", John Wiley and Sons, (1958).   Google Scholar

[69]

D. Y. Tang, W. S. Man, H. Y. Tam and P. D. Drummond, Observation of bound states of solitons in a passively mode-locked fiber laser,, Phys. Rev. A, 64 (2001).  doi: 10.1103/PhysRevA.64.033814.  Google Scholar

[70]

P. R. Wallace, The band theory of graphite,, Phys. Rev., 71 (1947).  doi: 10.1103/PhysRev.71.622.  Google Scholar

[71]

X. Wang, Z. Chen, J. Wang and J. K. Yang, Observation of in-band lattice solitons,, Phys. Rev. Lett., 99 (2007).  doi: 10.1103/PhysRevLett.99.243901.  Google Scholar

[72]

J. K. Yang and T. I. Lakoba, Universally-convergent squared-operator iteration methods for solitary waves in general nonlinear wave equations,, Stud. Appl. Math., 118 (2007), 153.  doi: 10.1111/j.1467-9590.2007.00371.x.  Google Scholar

[73]

J. K. Yang, I. Makasyuk, A. Bezryadina and Z. Chen, Dipole solitons in optically induced two-dimensional photonic lattices,, Opt. Lett., 29 (2004), 1662.  doi: 10.1364/OL.29.001662.  Google Scholar

[74]

V. E. Zakharov, A. I. Dyachenko and O. A. Vasilyev, New method for numerical simulation of a nonstationary potential flow of incompressible fluid with a free surface,, Eur. J. Mech. B/Fluids, 21 (2002), 283.  doi: 10.1016/S0997-7546(02)01189-5.  Google Scholar

[75]

Y. Zhu and J. Yang, Universal fractal structures in the weak interaction of solitary waves in generalized nonlinear Schrödinger equations,, Phys. Rev. E, 75 (2007).  doi: 10.1103/PhysRevE.75.036605.  Google Scholar

show all references

References:
[1]

M. J. Ablowitz and G. Biondini, Multiscale pulse dynamics in communication systems with strong dispersion management,, Opt. Lett., 23 (1998), 1668.  doi: 10.1364/OL.23.001668.  Google Scholar

[2]

M. J. Ablowitz, G. Biondini and E. Olson, On the evolution and interaction of dispersion-managed solitons,, in, (2000), 362.   Google Scholar

[3]

M. J. Ablowitz, A. S. Fokas and Z. Musslimani, On a new non-local formulation of water waves,, J. Fluid Mech., 562 (2006), 313.  doi: 10.1017/S0022112006001091.  Google Scholar

[4]

M. J. Ablowitz and T. S. Haut, Asymptotic expansions for solitary gravity-capillary waves in two and three dimensions,, Proc. Roy. Soc. A, 465 (2009), 2725.  doi: 10.1098/rspa.2009.0112.  Google Scholar

[5]

M. J. Ablowitz and T. P. Horikis, Pulse dynamics and solitons in mode-locked lasers,, Phys. Rev. A, 78 (2008).  doi: 10.1103/PhysRevA.78.011802.  Google Scholar

[6]

M. J. Ablowitz and T. P. Horikis, Solitons and spectral renormalization methods in nonlinear optics,, Eur. Phys. J. Special Topics, 173 (2009), 147.  doi: 10.1140/epjst/e2009-01072-0.  Google Scholar

[7]

M. J. Ablowitz and T. P. Horikis, Solitons in normally dispersive mode-locked lasers,, Phys. Rev. A, 79 (2009).  doi: 10.1103/PhysRevA.79.063845.  Google Scholar

[8]

M. J. Ablowitz, T. P. Horikis and B. Ilan, Solitons in dispersion-managed mode-locked lasers,, Phys. Rev. A, 77 (2008).  doi: 10.1103/PhysRevA.77.033814.  Google Scholar

[9]

M. J. Ablowitz, T. P. Horikis and S. D. Nixon, Soliton strings and interactions in mode-locked lasers,, Opt. Comm., 282 (2009), 4127.  doi: 10.1016/j.optcom.2009.07.005.  Google Scholar

[10]

M. J. Ablowitz, T. P. Horikis, S. D. Nixon and Y. Zhu, Asymptotic analysis of pulse dynamics in mode-locked lasers,, Stud. Appl. Math., 122 (2009), 411.  doi: 10.1111/j.1467-9590.2009.00441.x.  Google Scholar

[11]

M. J. Ablowitz, B. Ilan, E. Schonbrun and R. Piestun, Solitons in two-dimensional lattices possessing defects, dislocations, and quasicrystal structures,, Phys. Rev. E, 74 (2006).   Google Scholar

[12]

M. J. Ablowitz and Z. Musslimani, Discrete spatial solitons in a diffraction-managed nonlinear waveguide array: A unified approach,, Physica D, 184 (2003), 276.  doi: 10.1016/S0167-2789(03)00226-4.  Google Scholar

[13]

M. J. Ablowitz and Z. Musslimani, Spectral renormalization method for computing self-localized solutions to nonlinear systems,, Opt. Lett., 30 (2005), 2140.  doi: 10.1364/OL.30.002140.  Google Scholar

[14]

M. J. Ablowitz, S. D. Nixon and Y. Zhu, Conical diffraction in honeycomb lattices,, Phys. Rev. A, 79 (2009).  doi: 10.1103/PhysRevA.79.053830.  Google Scholar

[15]

M. J. Ablowitz and H. Segur, "Solitons and the Inverse Scattering Transform,", SIAM Publications, (1981).   Google Scholar

[16]

G. P. Agrawal, "Nonlinear Fiber Optics,", Academic Press, (2001).   Google Scholar

[17]

N. N. Akhmediev and A. Ankiewicz, "Solitons, Nonlinear Pulses and Beams,", Chapman & Hall, (1997).   Google Scholar

[18]

N. N. Akhmediev, J. M. Soto-Crespo and G. Town, Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: Complex Ginzburg-Landau equation approach,, Phys. Rev. E, 63 (2001).  doi: 10.1103/PhysRevE.63.056602.  Google Scholar

[19]

D. J. Benney and J. C. Luke, On the interactions of permanent waves of finite amplitude,, J. Math. Phys., 43 (1964), 309.   Google Scholar

[20]

M. V. Berry and M. R. Jeffrey, Conical diffraction: Hamilton's diabolical point at the heart of crystal optics,, Progress in Optics, 50 (2007), 13.  doi: 10.1016/S0079-6638(07)50002-8.  Google Scholar

[21]

J. Boussinesq, Essai sur la théorie des eaux courantes,, Mémoires Présentés par Divers Savants à l'Académie des Sciences, 1 (1877), 1.   Google Scholar

[22]

R. W. Boyd, "Nonlinear Optics,", Elsevier, (2002).   Google Scholar

[23]

R. Carretero-González, D. J. Frantzeskakis and P. G. Kevrekidis, Nonlinear waves in Bose-Einstein condensates: Physical relevance and mathematical techniques,, Nonlinearity, 21 (2008).  doi: 10.1088/0951-7715/21/7/R01.  Google Scholar

[24]

Z. G. Chen, A. Bezryadina, I. Makasyuk and J. K. Yang, Observation of two-dimensional lattice vector solitons,, Opt. Lett., 29 (2004), 1656.  doi: 10.1364/OL.29.001656.  Google Scholar

[25]

A. Chong, W. H. Renninger and F. W. Wise, Observation of antisymmetric dispersion-managed solitons in a mode-locked laser,, Opt. Lett., 33 (2008), 1717.  doi: 10.1364/OL.33.001717.  Google Scholar

[26]

A. Chong, W. H. Renninger and F. W. Wise, Properties of normal-dispersion femtosecond fiber lasers,, J. Opt. Soc. Am. B, 25 (2008), 140.  doi: 10.1364/JOSAB.25.000140.  Google Scholar

[27]

D. N. Christodoulides and R. Joseph, Discrete self-focusing in nonlinear arrays of coupled wave-guides,, Opt. Lett., 13 (1988), 794.  doi: 10.1364/OL.13.000794.  Google Scholar

[28]

W. Craig and M. D. Groves, Hamiltonian long-wave approximations to the water-wave problem,, Wave Motion, 19 (1994), 367.  doi: 10.1016/0165-2125(94)90003-5.  Google Scholar

[29]

W. Craig and C. Sulem, Numerical simulation of gravity waves,, J. Comp. Phys., 108 (1993), 73.  doi: 10.1006/jcph.1993.1164.  Google Scholar

[30]

S. Cundiff, J. Ye and J. Hall, Rulers of light,, Scientific American, 298 (2008), 74.  doi: 10.1038/scientificamerican0408-74.  Google Scholar

[31]

S. T. Cundiff, Soliton dynamics in mode-locked lasers,, Lect. Notes Phys., 661 (2005), 183.  doi: 10.1007/10928028_8.  Google Scholar

[32]

S. T. Cundiff, J. M. Soto-Crespo and N. N. Akhmediev, Experimental evidence for soliton explosions,, Phys. Rev. Lett., 88 (2002).  doi: 10.1103/PhysRevLett.88.073903.  Google Scholar

[33]

J. W. Dold, An efficient surface-integral algorithm applied to unsteady gravity-waves,, J. Comp. Phys., 103 (1992), 90.  doi: 10.1016/0021-9991(92)90327-U.  Google Scholar

[34]

N. K. Efremidis, J. Hudock, D. N. Christodoulides, J. W. Fleischer, O. Cohen and M. Segev, Two-dimenional optical lattice solitons,, Phys. Rev. Lett., 91 (2003).  doi: 10.1103/PhysRevLett.91.213906.  Google Scholar

[35]

N. K. Efremidis, J. Hudock, D. N. Christodoulides, J. W. Fleischer, O. Cohen and M. Segev, Two-dimensional optical lattice solitons,, Phys. Rev. Lett., 91 (2003).  doi: 10.1103/PhysRevLett.91.213906.  Google Scholar

[36]

N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer and M. Segev, Discrete solitons in photorefractive optically induced photonic lattices,, Phys. Rev. E, 66 (2002).  doi: 10.1103/PhysRevE.66.046602.  Google Scholar

[37]

H. Eisenberg, Y. Silberberg, R. Morandotti, A. Boyd and J. Aitchison, Wannier functions analysis of the nonlinear Schrödinger equation with a periodic potential,, Phys. Rev. Lett., 81 (1998), 3382.   Google Scholar

[38]

J. Fenton, A ninth-order solution for the solitary wave,, J. Fluid Mech., 53 (1972), 257.  doi: 10.1017/S002211207200014X.  Google Scholar

[39]

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis and D. N. Christodoulides, Observation of discrete solitons in optically induced real time waveguide arrays,, Phys. Rev. Lett., 90 (2003).  doi: 10.1103/PhysRevLett.90.023902.  Google Scholar

[40]

J. W. Fleischer, M. Segev, N. K. Efremidis and D. N. Christodoulides, Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,, Nature, 422 (2003), 147.  doi: 10.1038/nature01452.  Google Scholar

[41]

B. Fornberg, A numerical method for conformal-mappings,, SIAM J. Sci. Stat. Comput., 1 (1980), 386.  doi: 10.1137/0901027.  Google Scholar

[42]

B. Freedman, G. Bartal, M. Segev, R. Lifshitz, D. N. Christodoulides and J. W. Fleischer, Wave and defect dynamics in nonlinear photonic quasicrystals,, Nature, 440 (2006), 1166.  doi: 10.1038/nature04722.  Google Scholar

[43]

H. A. Haus, Theory of mode locking with a fast saturable absorber,, J. Appl. Plys., 46 (1975), 3049.  doi: 10.1063/1.321997.  Google Scholar

[44]

H. A. Haus, J. G. Fujimoto and E. P. Ippen, Analytic theory of additive pulse and Kerr lens mode locking,, IEEE J. Quant. Elec., 28 (1992), 2086.  doi: 10.1109/3.159519.  Google Scholar

[45]

T. S. Haut, "Nonlocal Formulations of Ideal Fluids and Applications,", Ph.D. Thesis, (2008).   Google Scholar

[46]

F. Ö. Ilday, J. R. Buckley, W. G. Clark and F. W. Wise, Self-similar evolution of parabolic pulses in a laser,, Phys. Rev. Lett., 92 (2004).  doi: 10.1103/PhysRevLett.92.213902.  Google Scholar

[47]

F. Ö. Ilday, F. W. Wise and F. X. Kaertner, Possibility of self-similar pulse evolution in a Ti:sapphire laser,, Opt. Express, 12 (2004), 2731.  doi: 10.1364/OPEX.12.002731.  Google Scholar

[48]

T. Kapitula, J. N. Kutz and B. Sandstede, Stability of pulses in the master mode-locking equation,, J. Opt. Soc. Am. B, 19 (2002), 740.  doi: 10.1364/JOSAB.19.000740.  Google Scholar

[49]

V. I. Karpman and V. V. Solov'ev, A perturbation theory for soliton systems,, Physica D, 3 (1981), 142.  doi: 10.1016/0167-2789(81)90123-8.  Google Scholar

[50]

P. G. Kevrekidis, D. J. Frantzeskakis and R. Carretero-González (eds.), "Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment,", Springer, (2007).   Google Scholar

[51]

P. G. Kevrekidis, K. O. Rasmussen and A. R. Bishop, The discrete nonlinear Schrödinger equation: A survey of recent results,, Int. J. Mod. Phys. B, 15 (2001), 2833.  doi: 10.1142/S0217979201007105.  Google Scholar

[52]

Y. Kodama and M. J. Ablowitz, Perturbations of solitons and solitary waves,, Stud. Appl. Math., 64 (1981), 225.   Google Scholar

[53]

D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves,, Phil. Mag., 39 (1895), 422.   Google Scholar

[54]

J. N. Kutz, Mode-locked soliton lasers,, SIAM Rev., 48 (2006), 629.  doi: 10.1137/S0036144504446357.  Google Scholar

[55]

T. I. Lakoba and J. K. Yang, A generalized Petviashvili iteration method for scalar and vector Hamiltonian equations with arbitrary form of nonlinearity,, J. Comp. Phys., 226 (2007), 1668.  doi: 10.1016/j.jcp.2007.06.009.  Google Scholar

[56]

H. Lamb, "Hydrodynamics,", Dover Publications, (1932).   Google Scholar

[57]

M. S. Longuet-Higgens and E. D. Cokelet, The deformation of steep surface waves on water. I. A numerical method of computation,, Proc. Roy. Soc. London A, 350 (1976), 1.  doi: 10.1098/rspa.1976.0092.  Google Scholar

[58]

M. S. Longuet-Higgins and J. Fenton, On the mass, momentum, energy, and circulation of a solitary wave,, Proc. R. Soc. London A, 340 (1974).  doi: 10.1098/rspa.1974.0166.  Google Scholar

[59]

D. N. Neshev, T. J. Alexander, E. A. Ostrovskaya, Y. S. Kivshar, I. Martin, H. Makasyuk and Z. G. Chen, Observation of discrete vortex solitons in optically induced photonic lattices,, Phys. Rev. Lett., 92 (2004).  doi: 10.1103/PhysRevLett.92.123903.  Google Scholar

[60]

O. Peleg, G. Bartal, B. Freedman, O. Manela, M. Segev and D. N. Christodoulides, Conical diffraction and gap solitons in honeycomb photonic lattices,, Phys. Rev. Lett., 98 (2007).  doi: 10.1103/PhysRevLett.98.103901.  Google Scholar

[61]

D. E. Pelinovsky and Y. A. Stepanyants, Convergence of Petviashvili's iteration method for numerical approximation of stationary solutions of nonlinear wave equations,, SIAM J. Numer. Anal., 42 (2004), 1110.  doi: 10.1137/S0036142902414232.  Google Scholar

[62]

N. Perrone and R. Kao, A general nonlinear relaxation iteration technique for solving nonlinear problems in mechanics,, Trans. ASME. Ser. E. J. Appl. Mech., 38 (1971), 371.  doi: 10.1115/1.3408785.  Google Scholar

[63]

V. I. Petviashvili, Equation of an extraordinary soliton,, Sov. J. Plasma Phys., 2 (1976), 257.   Google Scholar

[64]

J. S. Russell, "Report on Waves,", Report of the 14th meeting of the British Association, (1845), 311.   Google Scholar

[65]

Z. Shi and J. K. Yang, Solitary waves bifurcated from Bloch-band edges in two-dimesional periodic media,, Phys. Rev. E, 75 (2007).  doi: 10.1103/PhysRevE.75.056602.  Google Scholar

[66]

J. E. Sipe and H. G. Winful, Nonlinear Schrödinger solitons in a periodic structure,, Opt. Lett., 13 (1988), 132.  doi: 10.1364/OL.13.000132.  Google Scholar

[67]

M. Skorobogatiy and J. Yang, "Fundamentals of Photonic Crystal Guiding,", Cambridge, (2009).   Google Scholar

[68]

J. J. Stoker, "Water Waves, The Mathematical Theory with Applications,", John Wiley and Sons, (1958).   Google Scholar

[69]

D. Y. Tang, W. S. Man, H. Y. Tam and P. D. Drummond, Observation of bound states of solitons in a passively mode-locked fiber laser,, Phys. Rev. A, 64 (2001).  doi: 10.1103/PhysRevA.64.033814.  Google Scholar

[70]

P. R. Wallace, The band theory of graphite,, Phys. Rev., 71 (1947).  doi: 10.1103/PhysRev.71.622.  Google Scholar

[71]

X. Wang, Z. Chen, J. Wang and J. K. Yang, Observation of in-band lattice solitons,, Phys. Rev. Lett., 99 (2007).  doi: 10.1103/PhysRevLett.99.243901.  Google Scholar

[72]

J. K. Yang and T. I. Lakoba, Universally-convergent squared-operator iteration methods for solitary waves in general nonlinear wave equations,, Stud. Appl. Math., 118 (2007), 153.  doi: 10.1111/j.1467-9590.2007.00371.x.  Google Scholar

[73]

J. K. Yang, I. Makasyuk, A. Bezryadina and Z. Chen, Dipole solitons in optically induced two-dimensional photonic lattices,, Opt. Lett., 29 (2004), 1662.  doi: 10.1364/OL.29.001662.  Google Scholar

[74]

V. E. Zakharov, A. I. Dyachenko and O. A. Vasilyev, New method for numerical simulation of a nonstationary potential flow of incompressible fluid with a free surface,, Eur. J. Mech. B/Fluids, 21 (2002), 283.  doi: 10.1016/S0997-7546(02)01189-5.  Google Scholar

[75]

Y. Zhu and J. Yang, Universal fractal structures in the weak interaction of solitary waves in generalized nonlinear Schrödinger equations,, Phys. Rev. E, 75 (2007).  doi: 10.1103/PhysRevE.75.036605.  Google Scholar

[1]

Denis Gaidashev, Tomas Johnson. Spectral properties of renormalization for area-preserving maps. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3651-3675. doi: 10.3934/dcds.2016.36.3651

[2]

Paul Loya and Jinsung Park. On gluing formulas for the spectral invariants of Dirac type operators. Electronic Research Announcements, 2005, 11: 1-11.

[3]

Maria J. Esteban, Eric Séré. An overview on linear and nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 381-397. doi: 10.3934/dcds.2002.8.381

[4]

Tomás Caraballo, Francisco Morillas, José Valero. Asymptotic behaviour of a logistic lattice system. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4019-4037. doi: 10.3934/dcds.2014.34.4019

[5]

Xu Zhang. On the concentration of semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5389-5413. doi: 10.3934/dcds.2018238

[6]

Xiaoyan Lin, Xianhua Tang. Solutions of nonlinear periodic Dirac equations with periodic potentials. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2051-2061. doi: 10.3934/dcdss.2019132

[7]

Yu Chen, Yanheng Ding, Tian Xu. Potential well and multiplicity of solutions for nonlinear Dirac equations. Communications on Pure & Applied Analysis, 2020, 19 (1) : 587-607. doi: 10.3934/cpaa.2020028

[8]

H. Merdan, G. Caginalp. Decay of solutions to nonlinear parabolic equations: renormalization and rigorous results. Discrete & Continuous Dynamical Systems - B, 2003, 3 (4) : 565-588. doi: 10.3934/dcdsb.2003.3.565

[9]

Jonathan E. Rubin, Justyna Signerska-Rynkowska, Jonathan D. Touboul, Alexandre Vidal. Wild oscillations in a nonlinear neuron model with resets: (Ⅱ) Mixed-mode oscillations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 4003-4039. doi: 10.3934/dcdsb.2017205

[10]

Jáuber Cavalcante Oliveira, Jardel Morais Pereira, Gustavo Perla Menzala. Long time dynamics of a multidimensional nonlinear lattice with memory. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2715-2732. doi: 10.3934/dcdsb.2015.20.2715

[11]

Nabile Boussïd, Andrew Comech. Spectral stability of bi-frequency solitary waves in Soler and Dirac-Klein-Gordon models. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1331-1347. doi: 10.3934/cpaa.2018065

[12]

Andrew Comech, David Stuart. Small amplitude solitary waves in the Dirac-Maxwell system. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1349-1370. doi: 10.3934/cpaa.2018066

[13]

Hartmut Pecher. Local well-posedness for the nonlinear Dirac equation in two space dimensions. Communications on Pure & Applied Analysis, 2014, 13 (2) : 673-685. doi: 10.3934/cpaa.2014.13.673

[14]

Hyungjin Huh. Self-similar solutions to nonlinear Dirac equations and an application to nonuniqueness. Evolution Equations & Control Theory, 2018, 7 (1) : 53-60. doi: 10.3934/eect.2018003

[15]

Wilhelm Schlag. Spectral theory and nonlinear partial differential equations: A survey. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 703-723. doi: 10.3934/dcds.2006.15.703

[16]

G. A. Braga, Frederico Furtado, Jussara M. Moreira, Leonardo T. Rolla. Renormalization group analysis of nonlinear diffusion equations with time dependent coefficients: Analytical results. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 699-715. doi: 10.3934/dcdsb.2007.7.699

[17]

Fang-Di Dong, Wan-Tong Li, Li Zhang. Entire solutions in a two-dimensional nonlocal lattice dynamical system. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2517-2545. doi: 10.3934/cpaa.2018120

[18]

Shi-Liang Wu, Cheng-Hsiung Hsu. Entire solutions with merging fronts to a bistable periodic lattice dynamical system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2329-2346. doi: 10.3934/dcds.2016.36.2329

[19]

Ahmed Y. Abdallah. Upper semicontinuity of the attractor for a second order lattice dynamical system. Discrete & Continuous Dynamical Systems - B, 2005, 5 (4) : 899-916. doi: 10.3934/dcdsb.2005.5.899

[20]

Jong-Shenq Guo, Ying-Chih Lin. Traveling wave solution for a lattice dynamical system with convolution type nonlinearity. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 101-124. doi: 10.3934/dcds.2012.32.101

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

[Back to Top]