• Previous Article
    Nonsymmetric moving breather collisions in the Peyrard-Bishop DNA model
  • DCDS-S Home
  • This Issue
  • Next Article
    Analysis of supercontinuum generation under general dispersion characteristics and beyond the slowly varying envelope approximation
October  2011, 4(5): 975-994. doi: 10.3934/dcdss.2011.4.975

Asymptotics for supersonic traveling waves in the Morse lattice

1. 

Department of Mathematics, Southern Methodist University, Dallas TX 75275, United States

2. 

Department of Mathematics, ESFM-Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos Edificio 9, 07738 México D.F., Mexico

3. 

FENOMEC, Department of Mathematics and Mechanics, IIMAS-UNAM, Apdo. 20-726, 01000 México D.F., Mexico

Received  August 2009 Revised  December 2009 Published  December 2010

Supersonic traveling wave solutions to the Morse lattice are considered. By numerical means, we show that initial shock like initial values always evolve into traveling shock solutions after the emission of radiation traveling at the sound speed. Using a trial function which includes a shape modulation in the core of the shock we show how the Peierls-Nabarro self consistent potential induced by the lattice is canceled by the adjustment of the phase. We find excellent agreement between the modulation analysis and the numerical solutions.
Citation: Alejandro B. Aceves, Luis A. Cisneros-Ake, Antonmaria A. Minzoni. Asymptotics for supersonic traveling waves in the Morse lattice. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 975-994. doi: 10.3934/dcdss.2011.4.975
References:
[1]

A. A. Aigner, A. R. Champneys and V. M. Rothos, A new barrier to the existence of moving kinks in Frenkel-Kontorova lattices,, Physica D, 186 (2003), 148.  doi: doi:10.1016/S0167-2789(03)00261-6.  Google Scholar

[2]

O. M. Braun and Y. S. Kivshar, "The Frenkel-Kontorova Model, Concepts, Methods and Applications," Texts and Monographs in Physics,, Springer-Verlag, (2004).   Google Scholar

[3]

L. A. Cisneros and A. A. Minzoni, Asymptotics for kink propagation in the discrete Sine-Gordon equation,, Physica D, 237 (2008), 50.  doi: doi:10.1016/j.physd.2007.08.005.  Google Scholar

[4]

L. A. Cisneros and A. A. Minzoni, Asymptotics for supersonic soliton propagation in the Toda lattice equation,, Studies in Applied Mathematics, 120 (2008), 333.  doi: doi:10.1111/j.1467-9590.2008.00401.x.  Google Scholar

[5]

M. Collins, A quasicontinuum approximation for solitons in an atomic chain,, Chem. Phys. Lett., 77 (1981), 342.  doi: doi:10.1016/0009-2614(81)80161-3.  Google Scholar

[6]

J. Dancz and S. A. Rice, Large amplitude vibrational motion in a one dimensional chain: Coherent state representation,, J. Chem. Phys., 67 (1977), 1418.  doi: doi:10.1063/1.435015.  Google Scholar

[7]

H. Dym and H. P. McKean, "Fourier Series and Integrals,", Probability and Mathematical Statistics, (1972).   Google Scholar

[8]

J. C. Eilbeck and R. Flesch, Calculation of families of solitary waves on discrete lattices,, Phys. Lett. A, 149 (1990), 200.  doi: doi:10.1016/0375-9601(90)90326-J.  Google Scholar

[9]

E. Fermi, J. Pasta and S. Ulam, "Los Alamos Rpt LA-1940 (1955) Collected Papers of Enrico Fermi,", in Univ. of Chicago Press, II (1965).   Google Scholar

[10]

N. Flytzanis, St. Pnevmatikos and M. Peyrard, Discrete lattice solitons: Properties and stability,, J. Phys. A: Math. Gen., 22 (1989), 783.  doi: doi:10.1088/0305-4470/22/7/011.  Google Scholar

[11]

G. Friesecke and R. L. Pego, Solitary waves on FPU lattices: I. Qualitative properties, renormalization and continuum limit,, Nonlinearity, 12 (1999), 1601.  doi: doi:10.1088/0951-7715/12/6/311.  Google Scholar

[12]

G. Friesecke and J. A. D. Wattis, Existence theorem for solitary waves on lattices,, Commun. Math. Phys., 161 (1994), 391.  doi: doi:10.1007/BF02099784.  Google Scholar

[13]

B. L. Holian, Shock waves in the Toda lattice: Analysis,, Phys. Rev. A, 24 (1981), 2595.  doi: doi:10.1103/PhysRevA.24.2595.  Google Scholar

[14]

B. L. Holian and G. K. Straub, Molecular dynamics of shock waves in one-dimensional chains,, Phys. Rev. B, 18 (1978), 1593.  doi: doi:10.1103/PhysRevB.18.1593.  Google Scholar

[15]

T. R. O. Melvin, A. R. Champneys, P. G. Kevrekidis and J. Cuevas, Radiationless traveling waves in saturable nonlinear Schroedinger lattices,, Phys. Rev. Lett., 97 (2006).  doi: doi:10.1103/PhysRevLett.97.124101.  Google Scholar

[16]

S. P. Novikov, S. V. Manakov, L. P. Pitaevskii and V. E. Zakharov, "Theory of Solitons. The Inverse Scattering Transform,", Translated from the Russian. Contemporary Soviet Mathematics. Consultants Bureau [Plenum], (1984).   Google Scholar

[17]

M. Peyrard and M. Kruskal, Kink dynamics in the highly discrete sine-Gordon system,, Physica D, 14 (1984), 88.  doi: doi:10.1016/0167-2789(84)90006-X.  Google Scholar

[18]

T. J. Rolfe, S. A. Rice and J. Dancz, A numerical study of large amplitude motion on a chain of coupled nonlinear oscillators,, J. Chem. Phys., 70 (1979), 26.  doi: doi:10.1063/1.437242.  Google Scholar

[19]

P. Rosenau, Dynamics of dense lattice,, Phys. Rev. B, 36 (1987), 5868.  doi: doi:10.1103/PhysRevB.36.5868.  Google Scholar

[20]

M. Toda, "Theory of Nonlinear Lattices,", 2nd edition, 20 (1989).   Google Scholar

[21]

G. B. Whitham, "Linear and Nonlinear Waves,", Reprint of the 1974 original, (1974).   Google Scholar

show all references

References:
[1]

A. A. Aigner, A. R. Champneys and V. M. Rothos, A new barrier to the existence of moving kinks in Frenkel-Kontorova lattices,, Physica D, 186 (2003), 148.  doi: doi:10.1016/S0167-2789(03)00261-6.  Google Scholar

[2]

O. M. Braun and Y. S. Kivshar, "The Frenkel-Kontorova Model, Concepts, Methods and Applications," Texts and Monographs in Physics,, Springer-Verlag, (2004).   Google Scholar

[3]

L. A. Cisneros and A. A. Minzoni, Asymptotics for kink propagation in the discrete Sine-Gordon equation,, Physica D, 237 (2008), 50.  doi: doi:10.1016/j.physd.2007.08.005.  Google Scholar

[4]

L. A. Cisneros and A. A. Minzoni, Asymptotics for supersonic soliton propagation in the Toda lattice equation,, Studies in Applied Mathematics, 120 (2008), 333.  doi: doi:10.1111/j.1467-9590.2008.00401.x.  Google Scholar

[5]

M. Collins, A quasicontinuum approximation for solitons in an atomic chain,, Chem. Phys. Lett., 77 (1981), 342.  doi: doi:10.1016/0009-2614(81)80161-3.  Google Scholar

[6]

J. Dancz and S. A. Rice, Large amplitude vibrational motion in a one dimensional chain: Coherent state representation,, J. Chem. Phys., 67 (1977), 1418.  doi: doi:10.1063/1.435015.  Google Scholar

[7]

H. Dym and H. P. McKean, "Fourier Series and Integrals,", Probability and Mathematical Statistics, (1972).   Google Scholar

[8]

J. C. Eilbeck and R. Flesch, Calculation of families of solitary waves on discrete lattices,, Phys. Lett. A, 149 (1990), 200.  doi: doi:10.1016/0375-9601(90)90326-J.  Google Scholar

[9]

E. Fermi, J. Pasta and S. Ulam, "Los Alamos Rpt LA-1940 (1955) Collected Papers of Enrico Fermi,", in Univ. of Chicago Press, II (1965).   Google Scholar

[10]

N. Flytzanis, St. Pnevmatikos and M. Peyrard, Discrete lattice solitons: Properties and stability,, J. Phys. A: Math. Gen., 22 (1989), 783.  doi: doi:10.1088/0305-4470/22/7/011.  Google Scholar

[11]

G. Friesecke and R. L. Pego, Solitary waves on FPU lattices: I. Qualitative properties, renormalization and continuum limit,, Nonlinearity, 12 (1999), 1601.  doi: doi:10.1088/0951-7715/12/6/311.  Google Scholar

[12]

G. Friesecke and J. A. D. Wattis, Existence theorem for solitary waves on lattices,, Commun. Math. Phys., 161 (1994), 391.  doi: doi:10.1007/BF02099784.  Google Scholar

[13]

B. L. Holian, Shock waves in the Toda lattice: Analysis,, Phys. Rev. A, 24 (1981), 2595.  doi: doi:10.1103/PhysRevA.24.2595.  Google Scholar

[14]

B. L. Holian and G. K. Straub, Molecular dynamics of shock waves in one-dimensional chains,, Phys. Rev. B, 18 (1978), 1593.  doi: doi:10.1103/PhysRevB.18.1593.  Google Scholar

[15]

T. R. O. Melvin, A. R. Champneys, P. G. Kevrekidis and J. Cuevas, Radiationless traveling waves in saturable nonlinear Schroedinger lattices,, Phys. Rev. Lett., 97 (2006).  doi: doi:10.1103/PhysRevLett.97.124101.  Google Scholar

[16]

S. P. Novikov, S. V. Manakov, L. P. Pitaevskii and V. E. Zakharov, "Theory of Solitons. The Inverse Scattering Transform,", Translated from the Russian. Contemporary Soviet Mathematics. Consultants Bureau [Plenum], (1984).   Google Scholar

[17]

M. Peyrard and M. Kruskal, Kink dynamics in the highly discrete sine-Gordon system,, Physica D, 14 (1984), 88.  doi: doi:10.1016/0167-2789(84)90006-X.  Google Scholar

[18]

T. J. Rolfe, S. A. Rice and J. Dancz, A numerical study of large amplitude motion on a chain of coupled nonlinear oscillators,, J. Chem. Phys., 70 (1979), 26.  doi: doi:10.1063/1.437242.  Google Scholar

[19]

P. Rosenau, Dynamics of dense lattice,, Phys. Rev. B, 36 (1987), 5868.  doi: doi:10.1103/PhysRevB.36.5868.  Google Scholar

[20]

M. Toda, "Theory of Nonlinear Lattices,", 2nd edition, 20 (1989).   Google Scholar

[21]

G. B. Whitham, "Linear and Nonlinear Waves,", Reprint of the 1974 original, (1974).   Google Scholar

[1]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[2]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[3]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[4]

Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020031

[5]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[6]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[7]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[8]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[9]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[10]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[11]

Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (38)
  • HTML views (0)
  • Cited by (2)

[Back to Top]