\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Nonsymmetric moving breather collisions in the Peyrard-Bishop DNA model

Abstract Related Papers Cited by
  • We study nonsymmetric collisions of moving breathers (MBs) in the Peyrard-Bishop DNA model. In this paper we have considered the following types of nonsymmetric collisions: head-on collisions of two breathers traveling with different velocities; collisions of moving breathers with a stationary trapped breather; and collisions of moving breathers traveling with the same direction. The various main observed phenomena are: one moving breather gets trapped at the collision region, and the other one is reflected; breather fusion without trapping, with the appearance of a new moving breather; and breather generation without trapping, with the appearance of new moving breathers traveling either with the same or different directions. For comparison we have included some results of a previous paper concerning to symmetric collisions, where two identical moving breathers traveling with opposite velocities collide. For symmetric collisions, the main observed phenomena are: breather generation with trapping, with the appearance of two new moving breathers with opposite velocities and a stationary breather trapped at the collision region; and breather generation without trapping, with the appearance of new moving breathers with opposite velocities. A common feature for all types of collisions is that the collision outcome depends on the internal structure of the moving breathers and the exact number of pair-bases that initially separates the stationary breathers when they are perturbed. As some nonsymmetric collisions result in the generation of a new stationary trapped breather of larger energy, the trapping phenomenon could play an important part of the complex mechanisms involved in the initiation of the DNA transcription processes.
    Mathematics Subject Classification: Primary: 70Kxx, 82C22; Secondary: 92D20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    Focus issue edited by S. Flach and R. S. Mackay, Localization in nonlinear lattices, Physica D, 119 (1999), 1.

    [2]

    Focus issue edited by Yu S. Kivshar and S. Flach, Nonlinear localized modes: Physics and applications, Chaos, 13 (2003), 586.

    [3]

    Focus issue edited by T. Dauxois, R. S. Mackay and G. P. Tsironis, Condensed matter, dynamical systems and biophysics, Physica D, 216 (2006), 1.

    [4]

    A. Alvarez, F. R. Romero, J. F. R. Archilla, J. Cuevas and P. V. Larsen, Breather trapping and breather tansmission in a DNA model with an interface, Eur. Phys. J. B, 51 (2006), 119.doi: doi:10.1140/epjb/e2006-00191-0.

    [5]

    A. Alvarez, F. R. Romero, J. Cuevas and J. F. R. Archilla, Discrete moving breather collisions in a Klein-Gordon chain of oscillators, Phys. Lett. A, 372 (2008), 1256.doi: doi:10.1016/j.physleta.2007.09.035.

    [6]

    A. Alvarez, F. R. Romero, J. Cuevas and J. F. R. Archilla, Moving breather collisions in Klein-Gordon chains of oscillators, Eur. Phys. J. B, 70 (2009), 543.doi: doi:10.1140/epjb/e2009-00256-6.

    [7]

    S. Aubry, Breathers in nonlinear lattices: Existence, linear stability and quantization, Physica D, 103 (1997), 201.doi: doi:10.1016/S0167-2789(96)00261-8.

    [8]

    S. Aubry and T. Cretegny, Mobility and reactivity of discrete breathers, Physica D, 119 (1998), 34.doi: doi:10.1016/S0167-2789(98)00062-1.

    [9]

    D. Campbell, J. Schonfeld and C. Wingate, Resonance structure in kink-antikink interactions in $\phi^4$ theory, Physica D, 9 (1983), 1.doi: doi:10.1016/0167-2789(83)90289-0.

    [10]

    D. Chen, S. Aubry and G. P. Tsironis, Breather mobility in discrete $\varphi^4$ nonlinear lattices, Phys. Rev. Lett., 77 (1996), 4776.doi: doi:10.1103/PhysRevLett.77.4776.

    [11]

    J. Cuevas, J. F. R. Archilla, Yu. B. Gaididei and F. R. Romero, Moving breathers in a DNA model with competing short and long range dispersive interactions, Physica D, 163 (2002), 106.doi: doi:10.1016/S0167-2789(02)00351-2.

    [12]

    J. Cuevas and J. C. Eilbeck, Soliton collisions in a waveguide array with saturable nonlinearity, Phys. Lett. A, 358 (2006), 15.doi: doi:10.1016/j.physleta.2006.04.095.

    [13]

    J. Cuevas, F. Palmero, J. F. R. Archilla and F. R. Romero, Moving breathers in a bent DNA-related model, Phys. Lett. A, 299 (2002), 221.doi: doi:10.1016/S0375-9601(02)00731-4.

    [14]

    J. Cuevas, F. Palmero, J. F. R. Archilla and F. R. Romero, Moving discrete breathers in a Klein-Gordon chain with an impurity, J. Phys. A: Math. and Gen., 35 (2002), 10519.doi: doi:10.1088/0305-4470/35/49/302.

    [15]

    T. Dauxois and M. Peyrard, Energy localization in nonlinear lattices, Phys. Rev. Lett., 70 (1993), 3935.doi: doi:10.1103/PhysRevLett.70.3935.

    [16]

    T. Dauxois, M. Peyrard and C. R. Willis, Localized breather-like solutions in a discrete Klein-Gordon model and application to DNA, Physica D, 57 (1992), 267.doi: doi:10.1016/0167-2789(92)90003-6.

    [17]

    S. Dmitriev, P. Kevrekidis and Y. Kivshar, Radiationless energy exchange in three-soliton collisions, Phys. Rev. E, 78 (2008), 046604.doi: doi:10.1103/PhysRevE.78.046604.

    [18]

    Y. Doi, Energy exchange in collisions of intrinsic localized modes, Phys. Rev. E, 68 (2003), 066608.doi: doi:10.1103/PhysRevE.68.066608.

    [19]

    S. Flach and C. R. Willis, Discrete breathers, Phys. Rep., 295 (1998), 181.doi: doi:10.1016/S0370-1573(97)00068-9.

    [20]

    K. Forinash, T. Cretegny and M. Peyrard, Local modes and localization in amulticomponent nonlinear lattice, Phys. Rev. E, 55 (1997), 4740.doi: doi:10.1103/PhysRevE.55.4740.

    [21]

    K. Forinash, M. Peyrard and B. A. Malomed, Interaction of discrete breathers with impurity modes, Phys. Rev. E, 49(1994), 3400.doi: doi:10.1103/PhysRevE.49.3400.

    [22]

    P. G. Kevrekidis, K. Ø. Rasmussen and A. R. Bishop, The discrete nonlinear Schrödinger equation: A survey of recent results, Int. J. Mod. Phys. B, 15 (2001), 2833.doi: doi:10.1142/S0217979201007105.

    [23]

    R. S. MacKay and S. Aubry, Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators, Nonlinearity, 7 (1994), 1623.doi: doi:10.1088/0951-7715/7/6/006.

    [24]

    J. L. Marín and S. Aubry, Breathers in nonlinear lattices: Numerical calculation from the anticontinuous limit, Nonlinearity, 9 (1996), 1501.doi: doi:10.1088/0951-7715/9/6/007.

    [25]

    M. Meister and L. M. Floría, Bound states of breathers in the Frenkel-Kontorova model, Eur. Phys. J. B, 37 (2004), 213.doi: doi:10.1140/epjb/e2004-00049-5.

    [26]

    I. E. Papacharalampous, P. G. Kevrekidis, B. A. Malomed and D. J. Frantzeskakis, Soliton collisions in discrete nonlinear Schrödinger equation, Phys. Rev. E, 68 (2003), 046604.doi: doi:10.1103/PhysRevE.68.046604.

    [27]

    M. Peyrard and A. R. Bishop, Statistical mechanics of a nonlinear model for DNA denaturation, Phys. Rev. Lett., 62 (1989), 2755.doi: doi:10.1103/PhysRevLett.62.2755.

    [28]

    B. Sánchez-Rey, G. James, J. Cuevas and J. F. R. Archilla, Bright and dark breathers in Fermi-Pasta-Ulam lattices, Phys. Rev. B, 70 (2004), 014301.doi: doi:10.1103/PhysRevB.70.014301.

    [29]

    M. Sanz-Serna and M. P. Calvo, "Numerical Hamiltonian Problems," Chapman and Hall, 1994.

    [30]

    A. J. Sievers and S. Takeno, Intrinsic localized modes in anharmonic crystals, Phys. Rev. Lett., 61 (1988), 970.doi: doi:10.1103/PhysRevLett.61.970.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(140) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return