December  2012, 5(6): 1021-1090. doi: 10.3934/dcdss.2012.5.1021

Motivation, analysis and control of the variable density Navier-Stokes equations

1. 

Departamento EDAN, University of Sevilla, 41012 Sevilla, Spain

Received  December 2011 Revised  March 2012 Published  August 2012

The main objective of these Notes is to provide an introduction to variable density NS: their motivation, some of the main mathematical problems connected with them, the main techniques used to solve these problems, the main results and open questions. First, we will describe the physical origin of the equations. Then, we will be concerned with existence, uniqueness, regularity and control of initial-boundary value problems in cylindrical domains $ Ω $ $\times (0,T)$; as usual, $ Ω $ is the spatial domain, an open set in $\mathbb{R}$2 or $\mathbb{R}$3 ``filled'' by the fluid particles and (0,T) is the time observation interval. Some open problems (not all them of the same difficulty) are also recalled.
Citation: Enrique Fernández-Cara. Motivation, analysis and control of the variable density Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2012, 5 (6) : 1021-1090. doi: 10.3934/dcdss.2012.5.1021
References:
[1]

R. A. Adams, "Sobolev Spaces," volume 65 of "Pure and Applied Mathematics,", Academic Press, (1975).

[2]

V. M. Alekseev, V. M. Tikhomirov and S. V. Fomin., "Optimal Control,", Contemporary Soviet Mathematics. Consultants Bureau, (1987).

[3]

C. Amrouche and V. Girault, On the existence and regularity of the solutions of Stokes problem in arbitrary dimension,, Proc. Japan Acad. Ser. A Math. Sci., 67 (1991), 171. doi: 10.3792/pjaa.67.171.

[4]

S. Anita, V. Arnautu and V. Capasso, "An Introduction to Optimal Control Problems in Life Sciences and Economics,", Modeling and Simulation in Science, (2011).

[5]

F. Araruna and E. Fernández-Cara, On the controllability of nonhomogeneous viscous fluids,, To appear, (2012).

[6]

V. Arnautu and P. Neittaanmaki, "Optimal Control From Theory to Computer Programs," volume 111 of "Solid Mechanics and its Applications,", Kluwer Academic Publishers Group, (2003).

[7]

J. L. Boldrini and M. A. Rojas-Medar, Global solutions to the equations for the motion of stratified incompressible fluids,, Mat. Contemp., 3 (1992), 1.

[8]

J. L. Boldrini and M. A. Rojas-Medar, Global strong solutions of the equations for the motion of nonhomogeneous incompressible fluids,, In C. Conca and G. N. Gatica, (1997), 35.

[9]

R. C. Cabrales and E. Fernández-Cara, Numerical control of some solidification processes,, To appear, (2012).

[10]

M. Cannone, Harmonic analysis tools for solving the incompressible Navier-Stokes equations,, In, (2004), 161.

[11]

J.-Y. Chemin, Le système de Navier-Stokes incompressible soixante dix ans apr\`es Jean Leray,, In, (2004), 99.

[12]

H. J. Choe and H. Kim, Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids,, Comm. Partial Differential Equations, 28 (2003), 1183. doi: 10.1081/PDE-120021191.

[13]

A. J. Chorin and J. E. Marsden, "A Mathematical Introduction to Fluid Mechanics," volume 4 of "Texts in Applied Mathematics,", Springer-Verlag, (1993).

[14]

P. Constantin and C. Foias, "Navier-Stokes Equations,", Chicago Lectures in Mathematics, (1988).

[15]

J.-M. Coron, On the controllability of the $2$-D incompressible Navier-Stokes equations with the Navier slip boundary conditions,, ESAIM Contrôle Optim. Calc. Var., 1 (): 35. doi: 10.1051/cocv:1996102.

[16]

J.-M. Coron and A. V. Fursikov, Global exact controllability of the $2$D Navier-Stokes equations on a manifold without boundary,, Russian J. Math. Phys., 4 (1996), 429.

[17]

J.-M. Coron and S. Guerrero, Local null controllability of the two-dimensional Navier-Stokes system in the torus with a control force having a vanishing component,, J. Math. Pures Appl. (9), 92 (2009), 528.

[18]

J.-M. Coron and S. Guerrero, Null controllability of the $N$-dimensional Stokes system with $N-1$ scalar controls,, J. Differential Equations, 246 (2009), 2908. doi: 10.1016/j.jde.2008.10.019.

[19]

R. Danchin, On the well-posedness of the incompressible density-dependent Euler equations in the $L^p$ framework,, J. Differential Equations, 248 (2010), 2130. doi: 10.1016/j.jde.2009.09.007.

[20]

R. Dautray and J.-L. Lions, "Analyse mathématique et calcul numérique pour les sciences et les techniques. Tomes 1, 2, 3,", Collection du Commissariat à l'Énergie Atomique: Série Scientifique, (1985).

[21]

R. J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces,, Invent. Math., 98 (1989), 511. doi: 10.1007/BF01393835.

[22]

C. Fabre, Résultats d'unicité pour les équations de Stokes et applications au contrôle,, C. R. Acad. Sci. Paris Sér. I Math., 322 (1996), 1191.

[23]

E. Fernández-Cara and S. Guerrero, Global Carleman inequalities for parabolic systems and applications to controllability,, SIAM J. Control Optim., 45 (2006), 1399.

[24]

E. Fernández-Cara, S. Guerrero, O. Yu. Imanuvilov and J.-P. Puel, Local exact controllability of the Navier-Stokes system,, J. Math. Pures Appl. (9), 83 (2004), 1501.

[25]

E. Fernández-Cara, S. Guerrero, O. Yu. Imanuvilov and J.-P. Puel, Some controllability results for the $N$-dimensional Navier-Stokes and Boussinesq systems with $N-1$ scalar controls,, SIAM J. Control Optim., 45 (2006), 146. doi: 10.1137/04061965X.

[26]

C. Foias, O. Manley, R. Rosa and R. Temam, "Navier-Stokes Equations and Turbulence," volume 83 of "Encyclopedia of Mathematics and its Applications,", Cambridge University Press, (2001).

[27]

A. V. Fursikov, M. Gunzburger, L. S. Hou and S. Manservisi, Optimal control problems for the Navier-Stokes equations,, In, (1999), 143.

[28]

A. V. Fursikov and O. Yu. Imanuilov, Exact controllability of the Navier-Stokes and Boussinesq equations,, Uspekhi Mat. Nauk, 54 (1999), 93.

[29]

A. V. Fursikov and O. Yu. Imanuvilov, "Controllability of Evolution Equations," volume 34 of "Lecture Notes Series,", Seoul National University Research Institute of Mathematics Global Analysis Research Center, (1996).

[30]

P. Germain, Strong solutions and weak-strong uniqueness for the nonhomogeneous Navier-Stokes system,, J. Anal. Math., 105 (2008), 169. doi: 10.1007/s11854-008-0034-4.

[31]

M. Giga, Y. Giga and H. Sohr, $L^p$ estimates for the Stokes system,, In, 1540 (1991), 55.

[32]

R. Glowinski, J.-L. Lions and J. He, "Exact and Approximate Controllability for Distributed Parameter Systems," volume 117 of "Encyclopedia of Mathematics and its Applications,", Cambridge University Press, (2008).

[33]

M. González-Burgos, S. Guerrero and J.-P. Puel, Local exact controllability to the trajectories of the Boussinesq system via a fictitious control on the divergence equation,, Commun. Pure Appl. Anal., 8 (2009), 311.

[34]

S. Guerrero, Local exact controllability to the trajectories of the Boussinesq system,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 29. doi: 10.1016/j.anihpc.2005.01.002.

[35]

M. D. Gunzburger, "Perspectives in Flow Control and Optimization," volume 5 of "Advances in Design and Control,", Society for Industrial and Applied Mathematics (SIAM), (2003).

[36]

J. G. Heywood, The Navier-Stokes equations: on the existence, regularity and decay of solutions,, Indiana Univ. Math. J., 29 (1980), 639. doi: 10.1512/iumj.1980.29.29048.

[37]

J. G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem I: regularity of solutions and second order error estimates for spatial discretization,, SIAM J. Numer. Anal., 19 (1982), 275. doi: 10.1137/0719018.

[38]

O. Yu. Imanuvilov, Remarks on exact controllability for the Navier-Stokes equations,, ESAIM Control Optim. Calc. Var., 6 (2001), 39.

[39]

O. Yu. Imanuvilov and J.-P. Puel, Global Carleman estimates for weak solutions of elliptic nonhomogeneous Dirichlet problems,, Int. Math. Res. Not., 16 (2003), 883. doi: 10.1155/S107379280321117X.

[40]

T. Kato and H. Fujita, On the nonstationary Navier-Stokes system,, Rend. Sem. Mat. Univ. Padova, 32 (1962), 243.

[41]

J. U. Kim, Weak solutions of an initial-boundary value problems for an incompressible viscous fluid with nonnegative density,, SIAM J. Math. Anal., 18 (1987), 89. doi: 10.1137/0518007.

[42]

K. Kunisch, G. Leugering, J. Sprekels and F. Tröltzsch, editors, "Optimal Control of Coupled Systems of Partial Differential Equations," volume 158 of "International Series of Numerical Mathematics,", Birkhäuser Verlag, (2009), 2.

[43]

P. G. Lemarié-Rieusset, "Recent Developments in the Navier-Stokes Problem," volume 431 of "Chapman & Hall/CRC Research Notes in Mathematics,", Chapman & Hall/CRC, (2002).

[44]

J.-L. Lions and E. Zuazua, Exact boundary controllability of Galerkin's approximations of Navier-Stokes equations,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26 (1998), 605.

[45]

P.-L. Lions, "Mathematical Topics in Fluid Mechanics. Vol I: Incompressible Models," volume 3 of "Oxford Lecture Series in Mathematics and its Applications,", The Clarendon Press, (1996).

[46]

P.-L. Lions and N. Masmoudi, Uniqueness of mild solutions of the Navier-Stokes system in $L^N$,, Comm. Partial Differential Equations, 26 (2001), 2211. doi: 10.1081/PDE-100107819.

[47]

N. Masmoudi, Uniqueness results for some PDEs,, In, (2003).

[48]

R. L. Panton, "Incompressible Flow,", A Wiley-Interscience Publication, (1984).

[49]

F. Rempfer, On boundary conditions for incompressible navier-stokes problems,, Applied Mechanics Reviews, 59 (2006), 107. doi: 10.1115/1.2177683.

[50]

D. L. Russell, A unified boundary controllability theory for hyperbolic and parabolic partial differential equations,, Studies in Appl. Math., 52 (1973), 189.

[51]

D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions,, SIAM Rev., 20 (1978), 639. doi: 10.1137/1020095.

[52]

R. Salvi, The equations of viscous incompressible nonhomogeneous fluid: on the existence and regularity,, J. Austral. Math. Soc. Ser. B, 33 (1991), 94. doi: 10.1017/S0334270000008651.

[53]

J. C. Saut and B. Scheurer, Unique continuation for some evolution equations,, J. Differential Equations, 66 (1987), 118. doi: 10.1016/0022-0396(87)90043-X.

[54]

H. Schlichting, "Boundary Layer Theory,", McGraw-Hill, (1955).

[55]

J. Simon, "Existencia de solución del problema de Navier-Stokes con densidad variable," (spanish) [existence of solution for the variable density Navier-Stokes problem],, Lectures at the University of Sevilla, (1989).

[56]

J. Simon, Nonhomogeneous viscous incompressible fluids: existence of velocity, density, and pressure,, SIAM J. Math. Anal., 21 (1990), 1093. doi: 10.1137/0521061.

[57]

R. Temam, "Navier-Stokes Equations. Theory and Numerical Analysis," volume 2 of "Studies in Mathematics and its Applications,", North-Holland Publishing Co., (1984).

[58]

R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics," volume 68 of "Applied Mathematical Sciences,", Springer-Verlag, (1997).

[59]

E. Zeidler, "Nonlinear Functional Analysis and Its Applications. IV,", Springer-Verlag, (1988).

show all references

References:
[1]

R. A. Adams, "Sobolev Spaces," volume 65 of "Pure and Applied Mathematics,", Academic Press, (1975).

[2]

V. M. Alekseev, V. M. Tikhomirov and S. V. Fomin., "Optimal Control,", Contemporary Soviet Mathematics. Consultants Bureau, (1987).

[3]

C. Amrouche and V. Girault, On the existence and regularity of the solutions of Stokes problem in arbitrary dimension,, Proc. Japan Acad. Ser. A Math. Sci., 67 (1991), 171. doi: 10.3792/pjaa.67.171.

[4]

S. Anita, V. Arnautu and V. Capasso, "An Introduction to Optimal Control Problems in Life Sciences and Economics,", Modeling and Simulation in Science, (2011).

[5]

F. Araruna and E. Fernández-Cara, On the controllability of nonhomogeneous viscous fluids,, To appear, (2012).

[6]

V. Arnautu and P. Neittaanmaki, "Optimal Control From Theory to Computer Programs," volume 111 of "Solid Mechanics and its Applications,", Kluwer Academic Publishers Group, (2003).

[7]

J. L. Boldrini and M. A. Rojas-Medar, Global solutions to the equations for the motion of stratified incompressible fluids,, Mat. Contemp., 3 (1992), 1.

[8]

J. L. Boldrini and M. A. Rojas-Medar, Global strong solutions of the equations for the motion of nonhomogeneous incompressible fluids,, In C. Conca and G. N. Gatica, (1997), 35.

[9]

R. C. Cabrales and E. Fernández-Cara, Numerical control of some solidification processes,, To appear, (2012).

[10]

M. Cannone, Harmonic analysis tools for solving the incompressible Navier-Stokes equations,, In, (2004), 161.

[11]

J.-Y. Chemin, Le système de Navier-Stokes incompressible soixante dix ans apr\`es Jean Leray,, In, (2004), 99.

[12]

H. J. Choe and H. Kim, Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids,, Comm. Partial Differential Equations, 28 (2003), 1183. doi: 10.1081/PDE-120021191.

[13]

A. J. Chorin and J. E. Marsden, "A Mathematical Introduction to Fluid Mechanics," volume 4 of "Texts in Applied Mathematics,", Springer-Verlag, (1993).

[14]

P. Constantin and C. Foias, "Navier-Stokes Equations,", Chicago Lectures in Mathematics, (1988).

[15]

J.-M. Coron, On the controllability of the $2$-D incompressible Navier-Stokes equations with the Navier slip boundary conditions,, ESAIM Contrôle Optim. Calc. Var., 1 (): 35. doi: 10.1051/cocv:1996102.

[16]

J.-M. Coron and A. V. Fursikov, Global exact controllability of the $2$D Navier-Stokes equations on a manifold without boundary,, Russian J. Math. Phys., 4 (1996), 429.

[17]

J.-M. Coron and S. Guerrero, Local null controllability of the two-dimensional Navier-Stokes system in the torus with a control force having a vanishing component,, J. Math. Pures Appl. (9), 92 (2009), 528.

[18]

J.-M. Coron and S. Guerrero, Null controllability of the $N$-dimensional Stokes system with $N-1$ scalar controls,, J. Differential Equations, 246 (2009), 2908. doi: 10.1016/j.jde.2008.10.019.

[19]

R. Danchin, On the well-posedness of the incompressible density-dependent Euler equations in the $L^p$ framework,, J. Differential Equations, 248 (2010), 2130. doi: 10.1016/j.jde.2009.09.007.

[20]

R. Dautray and J.-L. Lions, "Analyse mathématique et calcul numérique pour les sciences et les techniques. Tomes 1, 2, 3,", Collection du Commissariat à l'Énergie Atomique: Série Scientifique, (1985).

[21]

R. J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces,, Invent. Math., 98 (1989), 511. doi: 10.1007/BF01393835.

[22]

C. Fabre, Résultats d'unicité pour les équations de Stokes et applications au contrôle,, C. R. Acad. Sci. Paris Sér. I Math., 322 (1996), 1191.

[23]

E. Fernández-Cara and S. Guerrero, Global Carleman inequalities for parabolic systems and applications to controllability,, SIAM J. Control Optim., 45 (2006), 1399.

[24]

E. Fernández-Cara, S. Guerrero, O. Yu. Imanuvilov and J.-P. Puel, Local exact controllability of the Navier-Stokes system,, J. Math. Pures Appl. (9), 83 (2004), 1501.

[25]

E. Fernández-Cara, S. Guerrero, O. Yu. Imanuvilov and J.-P. Puel, Some controllability results for the $N$-dimensional Navier-Stokes and Boussinesq systems with $N-1$ scalar controls,, SIAM J. Control Optim., 45 (2006), 146. doi: 10.1137/04061965X.

[26]

C. Foias, O. Manley, R. Rosa and R. Temam, "Navier-Stokes Equations and Turbulence," volume 83 of "Encyclopedia of Mathematics and its Applications,", Cambridge University Press, (2001).

[27]

A. V. Fursikov, M. Gunzburger, L. S. Hou and S. Manservisi, Optimal control problems for the Navier-Stokes equations,, In, (1999), 143.

[28]

A. V. Fursikov and O. Yu. Imanuilov, Exact controllability of the Navier-Stokes and Boussinesq equations,, Uspekhi Mat. Nauk, 54 (1999), 93.

[29]

A. V. Fursikov and O. Yu. Imanuvilov, "Controllability of Evolution Equations," volume 34 of "Lecture Notes Series,", Seoul National University Research Institute of Mathematics Global Analysis Research Center, (1996).

[30]

P. Germain, Strong solutions and weak-strong uniqueness for the nonhomogeneous Navier-Stokes system,, J. Anal. Math., 105 (2008), 169. doi: 10.1007/s11854-008-0034-4.

[31]

M. Giga, Y. Giga and H. Sohr, $L^p$ estimates for the Stokes system,, In, 1540 (1991), 55.

[32]

R. Glowinski, J.-L. Lions and J. He, "Exact and Approximate Controllability for Distributed Parameter Systems," volume 117 of "Encyclopedia of Mathematics and its Applications,", Cambridge University Press, (2008).

[33]

M. González-Burgos, S. Guerrero and J.-P. Puel, Local exact controllability to the trajectories of the Boussinesq system via a fictitious control on the divergence equation,, Commun. Pure Appl. Anal., 8 (2009), 311.

[34]

S. Guerrero, Local exact controllability to the trajectories of the Boussinesq system,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 29. doi: 10.1016/j.anihpc.2005.01.002.

[35]

M. D. Gunzburger, "Perspectives in Flow Control and Optimization," volume 5 of "Advances in Design and Control,", Society for Industrial and Applied Mathematics (SIAM), (2003).

[36]

J. G. Heywood, The Navier-Stokes equations: on the existence, regularity and decay of solutions,, Indiana Univ. Math. J., 29 (1980), 639. doi: 10.1512/iumj.1980.29.29048.

[37]

J. G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem I: regularity of solutions and second order error estimates for spatial discretization,, SIAM J. Numer. Anal., 19 (1982), 275. doi: 10.1137/0719018.

[38]

O. Yu. Imanuvilov, Remarks on exact controllability for the Navier-Stokes equations,, ESAIM Control Optim. Calc. Var., 6 (2001), 39.

[39]

O. Yu. Imanuvilov and J.-P. Puel, Global Carleman estimates for weak solutions of elliptic nonhomogeneous Dirichlet problems,, Int. Math. Res. Not., 16 (2003), 883. doi: 10.1155/S107379280321117X.

[40]

T. Kato and H. Fujita, On the nonstationary Navier-Stokes system,, Rend. Sem. Mat. Univ. Padova, 32 (1962), 243.

[41]

J. U. Kim, Weak solutions of an initial-boundary value problems for an incompressible viscous fluid with nonnegative density,, SIAM J. Math. Anal., 18 (1987), 89. doi: 10.1137/0518007.

[42]

K. Kunisch, G. Leugering, J. Sprekels and F. Tröltzsch, editors, "Optimal Control of Coupled Systems of Partial Differential Equations," volume 158 of "International Series of Numerical Mathematics,", Birkhäuser Verlag, (2009), 2.

[43]

P. G. Lemarié-Rieusset, "Recent Developments in the Navier-Stokes Problem," volume 431 of "Chapman & Hall/CRC Research Notes in Mathematics,", Chapman & Hall/CRC, (2002).

[44]

J.-L. Lions and E. Zuazua, Exact boundary controllability of Galerkin's approximations of Navier-Stokes equations,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26 (1998), 605.

[45]

P.-L. Lions, "Mathematical Topics in Fluid Mechanics. Vol I: Incompressible Models," volume 3 of "Oxford Lecture Series in Mathematics and its Applications,", The Clarendon Press, (1996).

[46]

P.-L. Lions and N. Masmoudi, Uniqueness of mild solutions of the Navier-Stokes system in $L^N$,, Comm. Partial Differential Equations, 26 (2001), 2211. doi: 10.1081/PDE-100107819.

[47]

N. Masmoudi, Uniqueness results for some PDEs,, In, (2003).

[48]

R. L. Panton, "Incompressible Flow,", A Wiley-Interscience Publication, (1984).

[49]

F. Rempfer, On boundary conditions for incompressible navier-stokes problems,, Applied Mechanics Reviews, 59 (2006), 107. doi: 10.1115/1.2177683.

[50]

D. L. Russell, A unified boundary controllability theory for hyperbolic and parabolic partial differential equations,, Studies in Appl. Math., 52 (1973), 189.

[51]

D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions,, SIAM Rev., 20 (1978), 639. doi: 10.1137/1020095.

[52]

R. Salvi, The equations of viscous incompressible nonhomogeneous fluid: on the existence and regularity,, J. Austral. Math. Soc. Ser. B, 33 (1991), 94. doi: 10.1017/S0334270000008651.

[53]

J. C. Saut and B. Scheurer, Unique continuation for some evolution equations,, J. Differential Equations, 66 (1987), 118. doi: 10.1016/0022-0396(87)90043-X.

[54]

H. Schlichting, "Boundary Layer Theory,", McGraw-Hill, (1955).

[55]

J. Simon, "Existencia de solución del problema de Navier-Stokes con densidad variable," (spanish) [existence of solution for the variable density Navier-Stokes problem],, Lectures at the University of Sevilla, (1989).

[56]

J. Simon, Nonhomogeneous viscous incompressible fluids: existence of velocity, density, and pressure,, SIAM J. Math. Anal., 21 (1990), 1093. doi: 10.1137/0521061.

[57]

R. Temam, "Navier-Stokes Equations. Theory and Numerical Analysis," volume 2 of "Studies in Mathematics and its Applications,", North-Holland Publishing Co., (1984).

[58]

R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics," volume 68 of "Applied Mathematical Sciences,", Springer-Verlag, (1997).

[59]

E. Zeidler, "Nonlinear Functional Analysis and Its Applications. IV,", Springer-Verlag, (1988).

[1]

Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747

[2]

Michele Campiti, Giovanni P. Galdi, Matthias Hieber. Global existence of strong solutions for $2$-dimensional Navier-Stokes equations on exterior domains with growing data at infinity. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1613-1627. doi: 10.3934/cpaa.2014.13.1613

[3]

Giovanni P. Galdi. Existence and uniqueness of time-periodic solutions to the Navier-Stokes equations in the whole plane. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1237-1257. doi: 10.3934/dcdss.2013.6.1237

[4]

Jochen Merker. Strong solutions of doubly nonlinear Navier-Stokes equations. Conference Publications, 2011, 2011 (Special) : 1052-1060. doi: 10.3934/proc.2011.2011.1052

[5]

Peter E. Kloeden, José Valero. The Kneser property of the weak solutions of the three dimensional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 161-179. doi: 10.3934/dcds.2010.28.161

[6]

Yukang Chen, Changhua Wei. Partial regularity of solutions to the fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5309-5322. doi: 10.3934/dcds.2016033

[7]

Peixin Zhang, Jianwen Zhang, Junning Zhao. On the global existence of classical solutions for compressible Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1085-1103. doi: 10.3934/dcds.2016.36.1085

[8]

Reinhard Racke, Jürgen Saal. Hyperbolic Navier-Stokes equations II: Global existence of small solutions. Evolution Equations & Control Theory, 2012, 1 (1) : 217-234. doi: 10.3934/eect.2012.1.217

[9]

Huaiqiang Yu, Bin Liu. Pontryagin's principle for local solutions of optimal control governed by the 2D Navier-Stokes equations with mixed control-state constraints. Mathematical Control & Related Fields, 2012, 2 (1) : 61-80. doi: 10.3934/mcrf.2012.2.61

[10]

Reinhard Farwig, Paul Felix Riechwald. Regularity criteria for weak solutions of the Navier-Stokes system in general unbounded domains. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 157-172. doi: 10.3934/dcdss.2016.9.157

[11]

Hamid Bellout, Jiří Neustupa, Patrick Penel. On a $\nu$-continuous family of strong solutions to the Euler or Navier-Stokes equations with the Navier-Type boundary condition. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1353-1373. doi: 10.3934/dcds.2010.27.1353

[12]

Igor Kukavica. On regularity for the Navier-Stokes equations in Morrey spaces. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1319-1328. doi: 10.3934/dcds.2010.26.1319

[13]

Igor Kukavica. On partial regularity for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 717-728. doi: 10.3934/dcds.2008.21.717

[14]

Xulong Qin, Zheng-An Yao. Global solutions of the free boundary problem for the compressible Navier-Stokes equations with density-dependent viscosity. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1041-1052. doi: 10.3934/cpaa.2010.9.1041

[15]

Luigi C. Berselli. An elementary approach to the 3D Navier-Stokes equations with Navier boundary conditions: Existence and uniqueness of various classes of solutions in the flat boundary case.. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 199-219. doi: 10.3934/dcdss.2010.3.199

[16]

Ariane Piovezan Entringer, José Luiz Boldrini. A phase field $\alpha$-Navier-Stokes vesicle-fluid interaction model: Existence and uniqueness of solutions. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 397-422. doi: 10.3934/dcdsb.2015.20.397

[17]

Tomás Caraballo, Xiaoying Han. A survey on Navier-Stokes models with delays: Existence, uniqueness and asymptotic behavior of solutions. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1079-1101. doi: 10.3934/dcdss.2015.8.1079

[18]

Lucas C. F. Ferreira, Elder J. Villamizar-Roa. On the existence of solutions for the Navier-Stokes system in a sum of weak-$L^{p}$ spaces. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 171-183. doi: 10.3934/dcds.2010.27.171

[19]

Jingrui Wang, Keyan Wang. Almost sure existence of global weak solutions to the 3D incompressible Navier-Stokes equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 5003-5019. doi: 10.3934/dcds.2017215

[20]

G. Deugoué, T. Tachim Medjo. The Stochastic 3D globally modified Navier-Stokes equations: Existence, uniqueness and asymptotic behavior. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2593-2621. doi: 10.3934/cpaa.2018123

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]