December  2012, 5(6): 1133-1145. doi: 10.3934/dcdss.2012.5.1133

The thermo-mechanics of rate-type fluids

1. 

Department of Mechanical Engineering, Texas A&M University, College Station, TX-77843, United States

Received  April 2012 Revised  June 2012 Published  August 2012

In this short paper a brief review is provided concerning the modeling of the thermo-mechanical response of rate type fluid models. Recently, two different approaches have been used to develop thermodynamically compatible rate type fluid models, one that assumes the Helmholtz potential and the other the Gibbs potential for the fluids. These two perspectives are complimentary, not all models that can be modeled within the first procedure can be obtained from the second one, and vice-versa. The two approaches greatly enlarge the arsenal of a modeler and most models that are used can be derived within the purview of these two approaches. More importantly, the two methodologies lead to interesting and useful new models which can be used to describe the behavior of materials that have hitherto defied proper description.
Citation: K. R. Rajagopal. The thermo-mechanics of rate-type fluids. Discrete & Continuous Dynamical Systems - S, 2012, 5 (6) : 1133-1145. doi: 10.3934/dcdss.2012.5.1133
References:
[1]

G. Barot, I. J. Rao and K. R. Rajagopal, A thermodynamic framework for the modeling of crystallizable shape memory polymers,, International Journal of Engineering Science, 46 (2008), 325.  doi: 10.1016/j.ijengsci.2007.11.008.  Google Scholar

[2]

A. N. Beris and S. F. Edwards, "Thermodynamics of Flowing Systems with Internal Microstructure,", Oxford Engineering Science Series 36, (1994).   Google Scholar

[3]

D. R. Bland, "The Linear Theory of Viscoelasticity,", Pergamon Press, (1960).   Google Scholar

[4]

J. M. Burgers, "Mechanical Considerations-model Systems-Phenomenological Theories of Relaxation and Viscosity,", In: First Report on Viscosity and Plasticity, (1939).   Google Scholar

[5]

A. L. Cauchy, Recherches sur lequilibre et le mouvement interieur des corps solides ou fluids, elastiques ou non elastiques,, Bull. Soc. Philomath, (1823), 9.   Google Scholar

[6]

J. D. Ferry, "Viscoelastic Properties of Polymers,", Wiley, (1980).   Google Scholar

[7]

J. Finger, Über die allgemeisten Bezeihungen zwischen Deformationen und den zugehoringen Spannungenin aelotropen und isotropen substanzen,, Akad. Wiss. Wien Sitzungsber, 103 (1894), 1073.   Google Scholar

[8]

G. Green, On the laws of reflexion and refraction of light at the common surface of two non-crystallized media,, (1837), (1837), 1839.   Google Scholar

[9]

A. E. Green and P. M. Naghdi, On thermodynamics and nature of second law,, Proc. Roy. Soc. Lond. A, 357 (1977), 253.  doi: 10.1098/rspa.1977.0166.  Google Scholar

[10]

M. Heida and J. Málek, On Korteweg-type compressible fluid-like materials,, International Journal of Engineering Science, 48 (2010), 1313.  doi: 10.1016/j.ijengsci.2010.06.031.  Google Scholar

[11]

M. Heida, J. Málek and K. R. Rajagopal, On the development and generalizations of Cahn-Hilliard equations within a thermodynamic framework,, Zeitschrift für Angewandte Mathematik und Physik, 63 (2012), 145.   Google Scholar

[12]

M. Heida, J. Málek and K. R. Rajagopal, On the development and generalizations of Allen-Cahn and Stefan equations within a thermodynamic framework,, Zeitschrift für Angewandte Mathematik und Physik, (2012).   Google Scholar

[13]

K. Kannan and K. R. Rajagopal, A thermodynamic framework for chemically reacting systems,, Zeitschrift für Angewandte Mathematik und Physik, 62 (2011), 331.   Google Scholar

[14]

J. M. Krishnan and K. R. Rajagopal, On the mechanical behavior of asphalt,, Mech. of Materials, 37 (2005), 1085.  doi: 10.1016/j.mechmat.2004.09.005.  Google Scholar

[15]

J. Málek and K. R. Rajagopal, Incompressible rate type fluids with pressure and shear-rate dependent material moduli,, Nonlinear Anal. Real World Appl., 8 (2007), 156.  doi: 10.1016/j.nonrwa.2005.06.006.  Google Scholar

[16]

J. Málek and K. R. Rajagopal, A thermodynamic framework for a mixture of two liquids, 2008, Nonlinear Anal. Real World Appl., 9 (2008), 1649.  doi: 10.1016/j.nonrwa.2007.04.008.  Google Scholar

[17]

J. C. Maxwell, On the dynamical theory of gases,, Philosophical Transactions of the Royal Society, 157 (1866), 26.   Google Scholar

[18]

W. Noll, On the foundations of mechanics of continuous media,, Carnegie Institute of Technology, (1957).   Google Scholar

[19]

J. G. Oldroyd, On the formulation of the rheological equations of state,, Proc. Roy. Soc. Lond. A, 200 (1950), 523.  doi: 10.1098/rspa.1950.0035.  Google Scholar

[20]

S. C. Prasad, K. R. Rajagopal and I. J. Rao, A continuum model for the creep of single crystal nickel-base superalloys,, Acta Mater., 53 (2005), 669.  doi: 10.1016/j.actamat.2004.10.020.  Google Scholar

[21]

S. C. Prasad, K. R. Rajagopal and I. J. Rao, A continuum model for the anisotropic creep of single crystal nickel-based superalloys,, Acta Mater., 54 (2006), 1487.  doi: 10.1016/j.actamat.2005.11.016.  Google Scholar

[22]

K. R. Rajagopal and A. R. Srinivasa, On the inelastic behavior of solids - Part 1: Twinning,, Int. J. Plast., 11 (1995), 653.  doi: 10.1016/S0749-6419(95)00027-5.  Google Scholar

[23]

K. R. Rajagopal and A. R. Srinivasa, Inelastic behavior of materials - part II: Energetics associated with discontinuous twinning,, Int. J. Plast., 13 (1997), 1.  doi: 10.1016/S0749-6419(96)00049-6.  Google Scholar

[24]

K. R. Rajagopal and A. R. Srinivasa, Mechanics of the inelastic behavior of materials - part I: Theoretical underpinnings,, Int. J. Plast., 14) (1998), 945.   Google Scholar

[25]

K. R. Rajagopal and A. R. Srinivasa, Mechanics of the inelastic behavior of materials - part II: Inelastic response,, Int. J. Plast., 14) (1998), 969.   Google Scholar

[26]

K. R. Rajagopal and A. R. Srinivasa, On the thermomechanics of shape memory wires,, Zeitschrift für Angewandte Mathematik und Physik, 50 (1999), 459.   Google Scholar

[27]

K. R. Rajagopal and A. R. Srinivasa, Thermodynamics of Rate type fluid model,, Journal of Non-Newtonian Fluid Mechanics, 88 (2000), 207.  doi: 10.1016/S0377-0257(99)00023-3.  Google Scholar

[28]

K. R. Rajagopal and A. R. Srinivasa, Modeling anisotropic fluids within the framework of bodies with multiple natural configurations,, Journal of Non-Newtonian Fluid Mechanics, 99 (2001), 109.  doi: 10.1016/S0377-0257(01)00116-1.  Google Scholar

[29]

K. R. Rajagopal and A. R. Srinivasa, On the thermomechanics of materials that have multiple natural configurations - part I: Viscoelasticity and classical plasticity,, Zeitschrift für Angewandte Mathematik und Physik, 55 (2004), 861.   Google Scholar

[30]

K. R. Rajagopal and A. R. Srinivasa, On the thermomechanics of materials that have multiple natural configurations - part II: Twinning and solid to solid phase transformation,, Zeitschrift für Angewandte Mathematik und Physik, 55 (2004), 1074.   Google Scholar

[31]

K. R. Rajagopal and A. R. Srinivasa, On the response of non-dissipative solids,, Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci., 463 (2007), 357.   Google Scholar

[32]

K. R. Rajagopal and A. R. Srinivasa, On a class of non-dissipative materials that are not hyperelastic,, Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci., 465 (2009), 495.   Google Scholar

[33]

K. R. Rajagopal and A. R. Srinivasa, A Gibbs-potential-based formulation for obtaining the response functions for a class of viscoelastic materials,, Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci., 467 (2011), 39.   Google Scholar

[34]

K. R. Rajagopal and A. R. Srinivasa, "Restrictions Placed on Constitutive Relations by Angular Momentum Balance and Galilean Invariance,", In Press, (2012).   Google Scholar

[35]

K. R. Rajagopal and A. S. Wineman, "Mechanical Response of Polymers,", Cambridge University Press, (2001).   Google Scholar

[36]

I. J. Rao and K. R. Rajagopal, A thermodynamic framework for the study of crystallization in polymers,, Zeitschrift für Angewandte Mathematik und Physik, 53 (2002), 365.   Google Scholar

[37]

C. Truesdell, Mechanical Foundations of Elasticity and Fluid Dynamics,, Mechanics I, (1966), 125.   Google Scholar

[38]

C. Truesdell and W. Noll, "Non-Linear Field Theories of Mechanics,", 2nd edition, (1992).   Google Scholar

show all references

References:
[1]

G. Barot, I. J. Rao and K. R. Rajagopal, A thermodynamic framework for the modeling of crystallizable shape memory polymers,, International Journal of Engineering Science, 46 (2008), 325.  doi: 10.1016/j.ijengsci.2007.11.008.  Google Scholar

[2]

A. N. Beris and S. F. Edwards, "Thermodynamics of Flowing Systems with Internal Microstructure,", Oxford Engineering Science Series 36, (1994).   Google Scholar

[3]

D. R. Bland, "The Linear Theory of Viscoelasticity,", Pergamon Press, (1960).   Google Scholar

[4]

J. M. Burgers, "Mechanical Considerations-model Systems-Phenomenological Theories of Relaxation and Viscosity,", In: First Report on Viscosity and Plasticity, (1939).   Google Scholar

[5]

A. L. Cauchy, Recherches sur lequilibre et le mouvement interieur des corps solides ou fluids, elastiques ou non elastiques,, Bull. Soc. Philomath, (1823), 9.   Google Scholar

[6]

J. D. Ferry, "Viscoelastic Properties of Polymers,", Wiley, (1980).   Google Scholar

[7]

J. Finger, Über die allgemeisten Bezeihungen zwischen Deformationen und den zugehoringen Spannungenin aelotropen und isotropen substanzen,, Akad. Wiss. Wien Sitzungsber, 103 (1894), 1073.   Google Scholar

[8]

G. Green, On the laws of reflexion and refraction of light at the common surface of two non-crystallized media,, (1837), (1837), 1839.   Google Scholar

[9]

A. E. Green and P. M. Naghdi, On thermodynamics and nature of second law,, Proc. Roy. Soc. Lond. A, 357 (1977), 253.  doi: 10.1098/rspa.1977.0166.  Google Scholar

[10]

M. Heida and J. Málek, On Korteweg-type compressible fluid-like materials,, International Journal of Engineering Science, 48 (2010), 1313.  doi: 10.1016/j.ijengsci.2010.06.031.  Google Scholar

[11]

M. Heida, J. Málek and K. R. Rajagopal, On the development and generalizations of Cahn-Hilliard equations within a thermodynamic framework,, Zeitschrift für Angewandte Mathematik und Physik, 63 (2012), 145.   Google Scholar

[12]

M. Heida, J. Málek and K. R. Rajagopal, On the development and generalizations of Allen-Cahn and Stefan equations within a thermodynamic framework,, Zeitschrift für Angewandte Mathematik und Physik, (2012).   Google Scholar

[13]

K. Kannan and K. R. Rajagopal, A thermodynamic framework for chemically reacting systems,, Zeitschrift für Angewandte Mathematik und Physik, 62 (2011), 331.   Google Scholar

[14]

J. M. Krishnan and K. R. Rajagopal, On the mechanical behavior of asphalt,, Mech. of Materials, 37 (2005), 1085.  doi: 10.1016/j.mechmat.2004.09.005.  Google Scholar

[15]

J. Málek and K. R. Rajagopal, Incompressible rate type fluids with pressure and shear-rate dependent material moduli,, Nonlinear Anal. Real World Appl., 8 (2007), 156.  doi: 10.1016/j.nonrwa.2005.06.006.  Google Scholar

[16]

J. Málek and K. R. Rajagopal, A thermodynamic framework for a mixture of two liquids, 2008, Nonlinear Anal. Real World Appl., 9 (2008), 1649.  doi: 10.1016/j.nonrwa.2007.04.008.  Google Scholar

[17]

J. C. Maxwell, On the dynamical theory of gases,, Philosophical Transactions of the Royal Society, 157 (1866), 26.   Google Scholar

[18]

W. Noll, On the foundations of mechanics of continuous media,, Carnegie Institute of Technology, (1957).   Google Scholar

[19]

J. G. Oldroyd, On the formulation of the rheological equations of state,, Proc. Roy. Soc. Lond. A, 200 (1950), 523.  doi: 10.1098/rspa.1950.0035.  Google Scholar

[20]

S. C. Prasad, K. R. Rajagopal and I. J. Rao, A continuum model for the creep of single crystal nickel-base superalloys,, Acta Mater., 53 (2005), 669.  doi: 10.1016/j.actamat.2004.10.020.  Google Scholar

[21]

S. C. Prasad, K. R. Rajagopal and I. J. Rao, A continuum model for the anisotropic creep of single crystal nickel-based superalloys,, Acta Mater., 54 (2006), 1487.  doi: 10.1016/j.actamat.2005.11.016.  Google Scholar

[22]

K. R. Rajagopal and A. R. Srinivasa, On the inelastic behavior of solids - Part 1: Twinning,, Int. J. Plast., 11 (1995), 653.  doi: 10.1016/S0749-6419(95)00027-5.  Google Scholar

[23]

K. R. Rajagopal and A. R. Srinivasa, Inelastic behavior of materials - part II: Energetics associated with discontinuous twinning,, Int. J. Plast., 13 (1997), 1.  doi: 10.1016/S0749-6419(96)00049-6.  Google Scholar

[24]

K. R. Rajagopal and A. R. Srinivasa, Mechanics of the inelastic behavior of materials - part I: Theoretical underpinnings,, Int. J. Plast., 14) (1998), 945.   Google Scholar

[25]

K. R. Rajagopal and A. R. Srinivasa, Mechanics of the inelastic behavior of materials - part II: Inelastic response,, Int. J. Plast., 14) (1998), 969.   Google Scholar

[26]

K. R. Rajagopal and A. R. Srinivasa, On the thermomechanics of shape memory wires,, Zeitschrift für Angewandte Mathematik und Physik, 50 (1999), 459.   Google Scholar

[27]

K. R. Rajagopal and A. R. Srinivasa, Thermodynamics of Rate type fluid model,, Journal of Non-Newtonian Fluid Mechanics, 88 (2000), 207.  doi: 10.1016/S0377-0257(99)00023-3.  Google Scholar

[28]

K. R. Rajagopal and A. R. Srinivasa, Modeling anisotropic fluids within the framework of bodies with multiple natural configurations,, Journal of Non-Newtonian Fluid Mechanics, 99 (2001), 109.  doi: 10.1016/S0377-0257(01)00116-1.  Google Scholar

[29]

K. R. Rajagopal and A. R. Srinivasa, On the thermomechanics of materials that have multiple natural configurations - part I: Viscoelasticity and classical plasticity,, Zeitschrift für Angewandte Mathematik und Physik, 55 (2004), 861.   Google Scholar

[30]

K. R. Rajagopal and A. R. Srinivasa, On the thermomechanics of materials that have multiple natural configurations - part II: Twinning and solid to solid phase transformation,, Zeitschrift für Angewandte Mathematik und Physik, 55 (2004), 1074.   Google Scholar

[31]

K. R. Rajagopal and A. R. Srinivasa, On the response of non-dissipative solids,, Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci., 463 (2007), 357.   Google Scholar

[32]

K. R. Rajagopal and A. R. Srinivasa, On a class of non-dissipative materials that are not hyperelastic,, Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci., 465 (2009), 495.   Google Scholar

[33]

K. R. Rajagopal and A. R. Srinivasa, A Gibbs-potential-based formulation for obtaining the response functions for a class of viscoelastic materials,, Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci., 467 (2011), 39.   Google Scholar

[34]

K. R. Rajagopal and A. R. Srinivasa, "Restrictions Placed on Constitutive Relations by Angular Momentum Balance and Galilean Invariance,", In Press, (2012).   Google Scholar

[35]

K. R. Rajagopal and A. S. Wineman, "Mechanical Response of Polymers,", Cambridge University Press, (2001).   Google Scholar

[36]

I. J. Rao and K. R. Rajagopal, A thermodynamic framework for the study of crystallization in polymers,, Zeitschrift für Angewandte Mathematik und Physik, 53 (2002), 365.   Google Scholar

[37]

C. Truesdell, Mechanical Foundations of Elasticity and Fluid Dynamics,, Mechanics I, (1966), 125.   Google Scholar

[38]

C. Truesdell and W. Noll, "Non-Linear Field Theories of Mechanics,", 2nd edition, (1992).   Google Scholar

[1]

Xin Zhong. Singularity formation to the nonhomogeneous magneto-micropolar fluid equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021021

[2]

Zsolt Saffer, Miklós Telek, Gábor Horváth. Analysis of Markov-modulated fluid polling systems with gated discipline. Journal of Industrial & Management Optimization, 2021, 17 (2) : 575-599. doi: 10.3934/jimo.2019124

[3]

Xiuli Xu, Xueke Pu. Optimal convergence rates of the magnetohydrodynamic model for quantum plasmas with potential force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 987-1010. doi: 10.3934/dcdsb.2020150

[4]

Lingyu Li, Jianfu Yang, Jinge Yang. Solutions to Chern-Simons-Schrödinger systems with external potential. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021008

[5]

Yue-Jun Peng, Shu Wang. Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 415-433. doi: 10.3934/dcds.2009.23.415

[6]

Wenlong Sun, Jiaqi Cheng, Xiaoying Han. Random attractors for 2D stochastic micropolar fluid flows on unbounded domains. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 693-716. doi: 10.3934/dcdsb.2020189

[7]

Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141

[8]

Pavel Eichler, Radek Fučík, Robert Straka. Computational study of immersed boundary - lattice Boltzmann method for fluid-structure interaction. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 819-833. doi: 10.3934/dcdss.2020349

[9]

Kengo Nakai, Yoshitaka Saiki. Machine-learning construction of a model for a macroscopic fluid variable using the delay-coordinate of a scalar observable. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1079-1092. doi: 10.3934/dcdss.2020352

[10]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[11]

Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi. Solvability and sliding mode control for the viscous Cahn–Hilliard system with a possibly singular potential. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020051

[12]

Gui-Qiang Chen, Beixiang Fang. Stability of transonic shock-fronts in three-dimensional conical steady potential flow past a perturbed cone. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 85-114. doi: 10.3934/dcds.2009.23.85

[13]

Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258

[14]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, 2021, 15 (1) : 159-183. doi: 10.3934/ipi.2020076

[15]

Tomáš Oberhuber, Tomáš Dytrych, Kristina D. Launey, Daniel Langr, Jerry P. Draayer. Transformation of a Nucleon-Nucleon potential operator into its SU(3) tensor form using GPUs. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1111-1122. doi: 10.3934/dcdss.2020383

[16]

Yi-Ming Tai, Zhengyang Zhang. Relaxation oscillations in a spruce-budworm interaction model with Holling's type II functional response. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021027

[17]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[18]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[19]

Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304

[20]

Dominique Chapelle, Philippe Moireau, Patrick Le Tallec. Robust filtering for joint state-parameter estimation in distributed mechanical systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 65-84. doi: 10.3934/dcds.2009.23.65

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (94)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]