Advanced Search
Article Contents
Article Contents

A framework for the development of implicit solvers for incompressible flow problems

Abstract Related Papers Cited by
  • This survey paper reviews some recent developments in the design of robust solution methods for the Navier--Stokes equations modelling incompressible fluid flow. There are two building blocks in our solution strategy. First, an implicit time integrator that uses a stabilized trapezoid rule with an explicit Adams--Bashforth method for error control, and second, a robust Krylov subspace solver for the spatially discretized system. Numerical experiments are presented that illustrate the effectiveness of our generic approach. It is further shown that the basic solution strategy can be readily extended to more complicated models, including unsteady flow problems with coupled physics and steady flow problems that are nondeterministic in the sense that they have uncertain input data.
    Mathematics Subject Classification: Primary: 65M22, 76D05, 76D05; Secondary: 76M10.


    \begin{equation} \\ \end{equation}
  • [1]

    Uri M. Ascher, Steven J. Ruuth and Brian T. R. Wetton, Implicit-explicit methods for time-dependent partial differential equations, SIAM J. Numer. Anal., 32 (1995), 797-823.doi: 10.1137/0732037.


    Alexei Bespalov, Catherine E. Powell and David Silvester, A priori error analysis of stochastic Galerkin mixed approximations of elliptic PDEs with random data., MIMS Eprint 2011.91, http://eprints.ma.man.ac.uk/1696/.


    Jonathan Boyle, Milan Mihajlović and Jennifer Scott, HSL_MI20: an efficient {AMG} preconditioner for finite element problems in 3D, Internat. J. Numer. Methods Engrg, 82 (2010), 64-98.


    H. Damanik, J. Hron, A. Ouazzi and S. Turek, A monolithic FEM-multigrid solver for non-isothermal incompressible flow on general meshes, J. Comput. Phys., 228 (2009), 3869-3881.doi: 10.1016/j.jcp.2009.02.024.


    Philip G. Drazin, "Introduction to Hydrodynamic Stability,'' Cambridge University Press, Cambridge, 2002.


    Howard Elman, Milan Mihajlović and David Silvester, Fast iterative solvers for buoyancy driven flow problems, J. Comput. Phys., 230 (2011), 3900-3914.doi: 10.1016/j.jcp.2011.02.014.


    Howard C. Elman, Alison Ramage and David J. Silvester, Algorithm 866: IFISS, a MATLAB toolbox for modelling incompressible flow, ACM Trans. Math. Softw., 33 (2007), 2-14.


    Howard C. Elman, David J. Silvester and Andrew J. Wathen, Performance and analysis of saddle point preconditioners for the discrete steady-state Navier-Stokes equations, Numer. Math., 90 (2002), 665-688.doi: 10.1007/s002110100300.


    Howard C. Elman, David J. Silvester and Andrew J. Wathen, "Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics,'' Oxford University Press, New York, 2005.


    Howard C. Elman and Ray S. Tuminaro, Boundary conditions in approximate commutator preconditioners for the Navier-Stokes equations, Electron. Trans. Numer. Anal., 35 (2009), 257-280.


    Oliver G. Ernst, Catherine E. Powell, David J. Silvester and Elisabeth Ullmann, Efficient solvers for a linear stochastic Galerkin mixed formulation of diffusion problems with random data, SIAM J. Sci. Comput., 31 (2009), 1424-1447.doi: 10.1137/070705817.


    P. M. Gresho, D. K. Gartling, J. R. Torczynski, K. A. Cliffe, K. H. Winters, T. J. Garratt, A. Spence and J. W. Goodrich, Is the steady viscous incompressible two-dimensional flow over a backward-facing step at Re=800 stable?, Internat. J. Numer. Methods Fluids, 17 (1993), 501-541.doi: 10.1002/fld.1650170605.


    Philip M. Gresho, David F. Griffiths and David J. Silvester, Adaptive time-stepping for incompressible flow; Part I: Scalar advection-diffusion, SIAM J. Sci. Comput., 30 (2008), 2018-2054.doi: 10.1137/070688018.


    P. M. Gresho and R. L. Sani, "Incompressible Flow and the Finite Element Method: Volume 2: Isothermal Laminar Flow,'' John Wiley, Chichester, 1998.


    David A. Kay, Philip M. Gresho, David F. Griffiths and David J. Silvester, Adaptive time-stepping for incompressible flow; Part II: Navier-Stokes equations, SIAM J. Sci. Comput., 32 (2010), 111-128.doi: 10.1137/080728032.


    David Kay, Daniel Loghin and Andrew Wathen, A preconditioner for the steady-state Navier-Stokes equations, SIAM J. Sci. Comput., 24 (2002), 237-256.doi: 10.1137/S106482759935808X.


    William Layton, "Introduction to the Numerical Analysis of Incompressible Viscous Flow,'' SIAM, Philadelphia, 2008. xx+213 pp. ISBN: 978-0-898716-57-3.


    O. P. Le Maître and O. M. Knio, "Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics,'' Springer, New York, 2010. xvi+536 pp. ISBN: 978-90-481-3519-6.


    Catherine E. Powell and Howard C. Elman, Block-diagonal preconditioning for spectral stochastic finite-element systems, IMA J. Numer. Anal., 29 (2009), 350-375.doi: 10.1093/imanum/drn014.


    Catherine E. Powell and David Silvester, Preconditioning steady-state Navier-Stokes equations with random data, MIMS Eprint 2012.35, http://eprints.ma.man.ac.uk/1792/.


    David Silvester, Howard Elman, David Kay and Andrew Wathen, Efficient preconditioning of the linearised Navier-Stokes equations for incompressible flow, J. Comput. Appl. Math., 128 (2001), 261-279.doi: 10.1016/S0377-0427(00)00515-X.


    David Silvester, Howard Elman and Alison Ramage, "Incompressible Flow and Iterative Solver Software (IFISS),'' Version 3.2, 2012. Available from http://www.manchester.ac.uk/ifiss/.


    J. C. Simo and F. Armero, Unconditional stability and long-term behaviour of transient algorithms for the incompressible Navier-Stokes and Euler equations, Comput. Methods Appl. Mech. Engrg., 111 (1994), 111-154.doi: 10.1016/0045-7825(94)90042-6.


    Dongbin Xiu, "Numerical Methods for Stochastic Computations: A Spectral Method Approach,'' Princeton University Press, Princeton, NJ, 2010. xiv+127 pp. ISBN: 978-0-691-14212-8.

  • 加载中
Open Access Under a Creative Commons license

Article Metrics

HTML views() PDF downloads(180) Cited by(0)

Access History



    DownLoad:  Full-Size Img  PowerPoint