February  2012, 5(1): 127-146. doi: 10.3934/dcdss.2012.5.127

Global solvability of a model for grain boundary motion with constraint

1. 

Department of Electronic Engineering and Computer, Science School of Engineering, Kinki University, Takayaumenobe, Higashihiroshimashi, Hiroshima, 739-2116

2. 

Department of Education, School of Education, Bukkyo University, 96 Kitahananobo-cho, Murasakino, Kita-ku, Kyoto, 603-8301, Japan

3. 

Department of Mathematics, Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, 221-8686, Japan

Received  June 2009 Revised  December 2009 Published  February 2011

We consider a model for grain boundary motion with constraint. In composite material science it is very important to investigate the grain boundary formation and its dynamics. In this paper we study a phase-filed model of grain boundaries, which is a modified version of the one proposed by R. Kobayashi, J.A. Warren and W.C. Carter [18]. The model is described as a system of a nonlinear parabolic partial differential equation and a nonlinear parabolic variational inequality. The main objective of this paper is to show the global existence of a solution for our model, employing some subdifferential techniques in the convex analysis.
Citation: Akio Ito, Nobuyuki Kenmochi, Noriaki Yamazaki. Global solvability of a model for grain boundary motion with constraint. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 127-146. doi: 10.3934/dcdss.2012.5.127
References:
[1]

F. Andreu, C. Ballester, V. Caselles and J. M. Mazón, The Dirichlet problem for the total variation flow, J. Funct. Anal., 180 (2001), 347-403. doi: 10.1006/jfan.2000.3698.  Google Scholar

[2]

F. Andreu, V. Caselles and J. M. Mazón, A strongly degenerate quasilinear equation: The parabolic case, Arch. Ration. Mech. Anal., 176 (2005), 415-453. doi: 10.1007/s00205-005-0358-5.  Google Scholar

[3]

H. Attouch, "Variational Convergence for Functions and Operators," Pitman Advanced Publishing Program, Boston-London-Melbourne, 1984.  Google Scholar

[4]

V. Barbu, "Nonlinear Semigroups and Differential Equations in Banach Spaces," Editura Academiei Republicii Socialiste Romania, Bucharest, Noordhoff International Publishing, Leiden, 1976.  Google Scholar

[5]

G. Bellettini, V. Caselles and M. Novaga, The total variation flow in RN J. Differential Equations, 184 (2002), 475-525. doi: 10.1006/jdeq.2001.4150.  Google Scholar

[6]

H. Brézis, "Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert," North-Holland, Amsterdam, 1973.  Google Scholar

[7]

J. W. Cahn, P. Fife and O. Penrose, A phase-field model for diffusion-induced grain-boundary motion, Acta Mater., 45 (1997), 4397-4413. doi: 10.1016/S1359-6454(97)00074-8.  Google Scholar

[8]

L. Q. Chen, Phase-field models for microstructure evolution, Annu. Rev. Mater Res., 32 (2002), 113-140. doi: 10.1146/annurev.matsci.32.112001.132041.  Google Scholar

[9]

K. Deckelnick and C. M. Elliott, An existence and uniqueness result for a phase-field model of diffusion-induced grain-boundary motion, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 1323-1344. doi: 10.1017/S0308210500001414.  Google Scholar

[10]

M.-H. Giga, Y. Giga and R. Kobayashi, Very singular diffusion equations, Proc. Taniguchi Conf. on Math., Advanced Studies in Pure Math., 31 (2001), 93-125.  Google Scholar

[11]

M. E. Gurtin and M. T. Lusk, Sharp interface and phase-field theories of recrystallization in the plane, Phys. D, 130 (1999), 133-154. doi: 10.1016/S0167-2789(98)00323-6.  Google Scholar

[12]

A. Ito, M. Gokieli, M. Niezgódka and M. Szpindler, Mathematical analysis of approximate system for one-dimensional grain boundary motion of Kobayashi-Warren-Carter type,, submitted., ().   Google Scholar

[13]

A. Ito, N. Kenmochi and N. Yamazaki, A phase-field model of grain boundary motion, Appl. Math., 53 (2008), 433-454. doi: 10.1007/s10492-008-0035-8.  Google Scholar

[14]

A. Ito, N. Kenmochi and N. Yamazaki, Weak solutions of grain boundary motion model with singularity, Rend. Mat. Appl. (7), 29 (2009), 51-63.  Google Scholar

[15]

N. Kenmochi, Solvability of nonlinear evolution equations with time-dependent constraints and applications, Bull. Fac. Education, Chiba Univ., 30 (1981), 1-87. Google Scholar

[16]

N. Kenmochi, Monotonicity and compactness methods for nonlinear variational inequalities, in "Handbook of Differential Equations, Stationary Partial Differential Equations," (ed. M. Chipot), Vol. 4, North Holland, Amsterdam, (2007), 203-298.  Google Scholar

[17]

R. Kobayashi and Y. Giga, Equations with singular diffusivity, J. Statist. Phys., 95 (1999), 1187-1220. doi: 10.1023/A:1004570921372.  Google Scholar

[18]

R. Kobayashi, J. A. Warren and W. C. Carter, A continuum model of grain boundaries, Phys. D, 140 (2000), 141-150. doi: 10.1016/S0167-2789(00)00023-3.  Google Scholar

[19]

R. Kobayashi, J. A. Warren and W. C. Carter, Grain boundary model and singular diffusivity, in "Free boundary problems: Theory and applications, II (Chiba, 1999)," 283-294, GAKUTO Internat. Ser. Math. Sci. Appl., 14, Gakko-tosho, Tokyo, 2000.  Google Scholar

[20]

A. E. Lobkovsky and J. A. Warren, Phase field model of premelting of grain boundaries, Phys. D, 164 (2002), 202-212. Google Scholar

[21]

M. T. Lusk, A phase field paradigm for grain growth and recrystallization, Proc. R. Soc. London A, 455 (1999), 677-700.  Google Scholar

[22]

M. Ôtani, Nonmonotone perturbations for nonlinear parabolic equations associated with subdifferential operators, Cauchy problems, J. Differential Equations, 46 (1982), 268-299.  Google Scholar

[23]

A. Visintin, "Models of Phase Transitions," Progress in Nonlinear Differential Equations and their Applications, Vol. 28, Birkhäser, Boston, 1996.  Google Scholar

show all references

References:
[1]

F. Andreu, C. Ballester, V. Caselles and J. M. Mazón, The Dirichlet problem for the total variation flow, J. Funct. Anal., 180 (2001), 347-403. doi: 10.1006/jfan.2000.3698.  Google Scholar

[2]

F. Andreu, V. Caselles and J. M. Mazón, A strongly degenerate quasilinear equation: The parabolic case, Arch. Ration. Mech. Anal., 176 (2005), 415-453. doi: 10.1007/s00205-005-0358-5.  Google Scholar

[3]

H. Attouch, "Variational Convergence for Functions and Operators," Pitman Advanced Publishing Program, Boston-London-Melbourne, 1984.  Google Scholar

[4]

V. Barbu, "Nonlinear Semigroups and Differential Equations in Banach Spaces," Editura Academiei Republicii Socialiste Romania, Bucharest, Noordhoff International Publishing, Leiden, 1976.  Google Scholar

[5]

G. Bellettini, V. Caselles and M. Novaga, The total variation flow in RN J. Differential Equations, 184 (2002), 475-525. doi: 10.1006/jdeq.2001.4150.  Google Scholar

[6]

H. Brézis, "Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert," North-Holland, Amsterdam, 1973.  Google Scholar

[7]

J. W. Cahn, P. Fife and O. Penrose, A phase-field model for diffusion-induced grain-boundary motion, Acta Mater., 45 (1997), 4397-4413. doi: 10.1016/S1359-6454(97)00074-8.  Google Scholar

[8]

L. Q. Chen, Phase-field models for microstructure evolution, Annu. Rev. Mater Res., 32 (2002), 113-140. doi: 10.1146/annurev.matsci.32.112001.132041.  Google Scholar

[9]

K. Deckelnick and C. M. Elliott, An existence and uniqueness result for a phase-field model of diffusion-induced grain-boundary motion, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 1323-1344. doi: 10.1017/S0308210500001414.  Google Scholar

[10]

M.-H. Giga, Y. Giga and R. Kobayashi, Very singular diffusion equations, Proc. Taniguchi Conf. on Math., Advanced Studies in Pure Math., 31 (2001), 93-125.  Google Scholar

[11]

M. E. Gurtin and M. T. Lusk, Sharp interface and phase-field theories of recrystallization in the plane, Phys. D, 130 (1999), 133-154. doi: 10.1016/S0167-2789(98)00323-6.  Google Scholar

[12]

A. Ito, M. Gokieli, M. Niezgódka and M. Szpindler, Mathematical analysis of approximate system for one-dimensional grain boundary motion of Kobayashi-Warren-Carter type,, submitted., ().   Google Scholar

[13]

A. Ito, N. Kenmochi and N. Yamazaki, A phase-field model of grain boundary motion, Appl. Math., 53 (2008), 433-454. doi: 10.1007/s10492-008-0035-8.  Google Scholar

[14]

A. Ito, N. Kenmochi and N. Yamazaki, Weak solutions of grain boundary motion model with singularity, Rend. Mat. Appl. (7), 29 (2009), 51-63.  Google Scholar

[15]

N. Kenmochi, Solvability of nonlinear evolution equations with time-dependent constraints and applications, Bull. Fac. Education, Chiba Univ., 30 (1981), 1-87. Google Scholar

[16]

N. Kenmochi, Monotonicity and compactness methods for nonlinear variational inequalities, in "Handbook of Differential Equations, Stationary Partial Differential Equations," (ed. M. Chipot), Vol. 4, North Holland, Amsterdam, (2007), 203-298.  Google Scholar

[17]

R. Kobayashi and Y. Giga, Equations with singular diffusivity, J. Statist. Phys., 95 (1999), 1187-1220. doi: 10.1023/A:1004570921372.  Google Scholar

[18]

R. Kobayashi, J. A. Warren and W. C. Carter, A continuum model of grain boundaries, Phys. D, 140 (2000), 141-150. doi: 10.1016/S0167-2789(00)00023-3.  Google Scholar

[19]

R. Kobayashi, J. A. Warren and W. C. Carter, Grain boundary model and singular diffusivity, in "Free boundary problems: Theory and applications, II (Chiba, 1999)," 283-294, GAKUTO Internat. Ser. Math. Sci. Appl., 14, Gakko-tosho, Tokyo, 2000.  Google Scholar

[20]

A. E. Lobkovsky and J. A. Warren, Phase field model of premelting of grain boundaries, Phys. D, 164 (2002), 202-212. Google Scholar

[21]

M. T. Lusk, A phase field paradigm for grain growth and recrystallization, Proc. R. Soc. London A, 455 (1999), 677-700.  Google Scholar

[22]

M. Ôtani, Nonmonotone perturbations for nonlinear parabolic equations associated with subdifferential operators, Cauchy problems, J. Differential Equations, 46 (1982), 268-299.  Google Scholar

[23]

A. Visintin, "Models of Phase Transitions," Progress in Nonlinear Differential Equations and their Applications, Vol. 28, Birkhäser, Boston, 1996.  Google Scholar

[1]

Nobuyuki Kenmochi, Noriaki Yamazaki. Global attractor of the multivalued semigroup associated with a phase-field model of grain boundary motion with constraint. Conference Publications, 2011, 2011 (Special) : 824-833. doi: 10.3934/proc.2011.2011.824

[2]

Ken Shirakawa, Hiroshi Watanabe. Energy-dissipative solution to a one-dimensional phase field model of grain boundary motion. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 139-159. doi: 10.3934/dcdss.2014.7.139

[3]

Ken Shirakawa, Hiroshi Watanabe. Large-time behavior for a PDE model of isothermal grain boundary motion with a constraint. Conference Publications, 2015, 2015 (special) : 1009-1018. doi: 10.3934/proc.2015.1009

[4]

Mi-Ho Giga, Yoshikazu Giga. A subdifferential interpretation of crystalline motion under nonuniform driving force. Conference Publications, 1998, 1998 (Special) : 276-287. doi: 10.3934/proc.1998.1998.276

[5]

Katayun Barmak, Eva Eggeling, Maria Emelianenko, Yekaterina Epshteyn, David Kinderlehrer, Richard Sharp, Shlomo Ta'asan. An entropy based theory of the grain boundary character distribution. Discrete & Continuous Dynamical Systems, 2011, 30 (2) : 427-454. doi: 10.3934/dcds.2011.30.427

[6]

Mahdi Boukrouche, Grzegorz Łukaszewicz. On global in time dynamics of a planar Bingham flow subject to a subdifferential boundary condition. Discrete & Continuous Dynamical Systems, 2014, 34 (10) : 3969-3983. doi: 10.3934/dcds.2014.34.3969

[7]

Kin Ming Hui. Collasping behaviour of a singular diffusion equation. Discrete & Continuous Dynamical Systems, 2012, 32 (6) : 2165-2185. doi: 10.3934/dcds.2012.32.2165

[8]

Reiner Henseler, Michael Herrmann, Barbara Niethammer, Juan J. L. Velázquez. A kinetic model for grain growth. Kinetic & Related Models, 2008, 1 (4) : 591-617. doi: 10.3934/krm.2008.1.591

[9]

Shin-Ichiro Ei, Hiroshi Matsuzawa. The motion of a transition layer for a bistable reaction diffusion equation with heterogeneous environment. Discrete & Continuous Dynamical Systems, 2010, 26 (3) : 901-921. doi: 10.3934/dcds.2010.26.901

[10]

Martin Burger, Jan-Frederik Pietschmann, Marie-Therese Wolfram. Identification of nonlinearities in transport-diffusion models of crowded motion. Inverse Problems & Imaging, 2013, 7 (4) : 1157-1182. doi: 10.3934/ipi.2013.7.1157

[11]

Soonki Hong, Seonhee Lim. Martin boundary of brownian motion on Gromov hyperbolic metric graphs. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3725-3757. doi: 10.3934/dcds.2021014

[12]

Kin Ming Hui, Sunghoon Kim. Existence of Neumann and singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems, 2015, 35 (10) : 4859-4887. doi: 10.3934/dcds.2015.35.4859

[13]

Thomas I. Seidman. Interface conditions for a singular reaction-diffusion system. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 631-643. doi: 10.3934/dcdss.2009.2.631

[14]

Elie Bretin, Imen Mekkaoui, Jérôme Pousin. Assessment of the effect of tissue motion in diffusion MRI: Derivation of new apparent diffusion coefficient formula. Inverse Problems & Imaging, 2018, 12 (1) : 125-152. doi: 10.3934/ipi.2018005

[15]

Anna Lisa Amadori. Contour enhancement via a singular free boundary problem. Conference Publications, 2007, 2007 (Special) : 44-53. doi: 10.3934/proc.2007.2007.44

[16]

Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124

[17]

L. Ke. Boundary behaviors for solutions of singular elliptic equations. Conference Publications, 1998, 1998 (Special) : 388-396. doi: 10.3934/proc.1998.1998.388

[18]

Ángela Jiménez-Casas, Aníbal Rodríguez-Bernal. Boundary feedback as a singular limit of damped hyperbolic problems with terms concentrating at the boundary. Discrete & Continuous Dynamical Systems, 2019, 39 (9) : 5125-5147. doi: 10.3934/dcds.2019208

[19]

Masahiro Kubo. Quasi-subdifferential operators and evolution equations. Conference Publications, 2013, 2013 (special) : 447-456. doi: 10.3934/proc.2013.2013.447

[20]

Shin-Ichiro Ei, Kota Ikeda, Masaharu Nagayama, Akiyasu Tomoeda. Reduced model from a reaction-diffusion system of collective motion of camphor boats. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 847-856. doi: 10.3934/dcdss.2015.8.847

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (66)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]