# American Institute of Mathematical Sciences

February  2012, 5(1): 147-158. doi: 10.3934/dcdss.2012.5.147

## A relation between cross-diffusion and reaction-diffusion

 1 Graduate School of Science and Engineering for Research, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan

Received  March 2009 Revised  January 2010 Published  February 2011

Reaction-diffusion system approximations to a cross-diffusion system are investigated. Iida and Ninomiya~[Recent Advances on Elliptic and Parabolic Issues, 145--164 (2006)] proposed a semilinear reaction-diffusion system with a small parameter and showed that the limit equation takes the form of a weakly coupled cross-diffusion system provided that solutions of both the reaction-diffusion and the cross-diffusion systems are sufficiently smooth. In this paper, the results are extended to a more general cross-diffusion problem involving strongly coupled systems. It is shown that a solution of the problem can be approximated by that of a semilinear reaction-diffusion system without any assumptions on the solutions. This indicates that the mechanism of cross-diffusion might be captured by reaction-diffusion interaction.
Citation: Hideki Murakawa. A relation between cross-diffusion and reaction-diffusion. Discrete and Continuous Dynamical Systems - S, 2012, 5 (1) : 147-158. doi: 10.3934/dcdss.2012.5.147
##### References:
 [1] L. Chen and A. Jüngel, Analysis of a multidimensional parabolic population model with strong cross-diffusion, SIAM J. Math. Anal., 36 (2006), 301-322. doi: 10.1137/S0036141003427798. [2] L. Chen and A. Jüngel, Analysis of a parabolic cross-diffusion population model without self-diffusion, J. Differential Equations, 224 (2006), 39-59. doi: 10.1016/j.jde.2005.08.002. [3] M. E. Gurtin, Some mathematical models for population dynamics that lead to segregation, Quart. Appl. Math, 32 (1974), 1-9. [4] M. Iida, M. Mimura and H. Ninomiya, Diffusion, cross-diffusion and competitive interaction, J. Math. Biol., 53 (2006), 617-641. doi: 10.1007/s00285-006-0013-2. [5] M. Iida and H. Ninomiya, A reaction-diffusion approximation to a cross-diffusion system, in "Recent Advances on Elliptic and Parabolic Issues" (eds. M. Chipot and H. Ninomiya), World Scientific, (2006), 145-164. doi: 10.1142/9789812774170_0007. [6] T. Kadota and K. Kuto, Positive steady states for a prey-predator model with some nonlinear diffusion terms, J. Math. Anal. Appl., 323 (2006), 1387-1401. doi: 10.1016/j.jmaa.2005.11.065. [7] E. H. Kerner, Further considerations on the statistical mechanics of biological associations, Bull. Math. Biophys., 21 (1959), 217-255. doi: 10.1007/BF02476361. [8] H. Murakawa, Reaction-diffusion system approximation to degenerate parabolic systems, Nonlinearity, 20 (2007), 2319-2332. doi: 10.1088/0951-7715/20/10/003. [9] H. Murakawa, A solution of nonlinear diffusion problems by semilinear reaction-diffusion systems, Kybernetika, 45 (2009), 580-590. [10] H. Murakawa, Discrete-time approximation to nonlinear degenerate parabolic problems using a semilinear reaction-diffusion system,, preprint., (). [11] A. Okubo and S. A. Levin, "Diffusion and Ecological Problems: Modern Perspectives. Second Edition," Interdisciplinary Applied Mathematics, 14, Springer-Verlag, New York, 2001. [12] P. Y. H. Pang and M. X. Wang, Strategy and stationary pattern in a three-species predator-prey model, J. Differential Equations, 200 (2004), 245-273. doi: 10.1016/j.jde.2004.01.004. [13] N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species, J. Theor. Biol., 79 (1979), 83-99. doi: 10.1016/0022-5193(79)90258-3. [14] R. Temam, "Navier-Stokes Equation Theory and Numerical Analysis," AMS Chelsea Publishing, Providence, RI., 2001.

show all references

##### References:
 [1] L. Chen and A. Jüngel, Analysis of a multidimensional parabolic population model with strong cross-diffusion, SIAM J. Math. Anal., 36 (2006), 301-322. doi: 10.1137/S0036141003427798. [2] L. Chen and A. Jüngel, Analysis of a parabolic cross-diffusion population model without self-diffusion, J. Differential Equations, 224 (2006), 39-59. doi: 10.1016/j.jde.2005.08.002. [3] M. E. Gurtin, Some mathematical models for population dynamics that lead to segregation, Quart. Appl. Math, 32 (1974), 1-9. [4] M. Iida, M. Mimura and H. Ninomiya, Diffusion, cross-diffusion and competitive interaction, J. Math. Biol., 53 (2006), 617-641. doi: 10.1007/s00285-006-0013-2. [5] M. Iida and H. Ninomiya, A reaction-diffusion approximation to a cross-diffusion system, in "Recent Advances on Elliptic and Parabolic Issues" (eds. M. Chipot and H. Ninomiya), World Scientific, (2006), 145-164. doi: 10.1142/9789812774170_0007. [6] T. Kadota and K. Kuto, Positive steady states for a prey-predator model with some nonlinear diffusion terms, J. Math. Anal. Appl., 323 (2006), 1387-1401. doi: 10.1016/j.jmaa.2005.11.065. [7] E. H. Kerner, Further considerations on the statistical mechanics of biological associations, Bull. Math. Biophys., 21 (1959), 217-255. doi: 10.1007/BF02476361. [8] H. Murakawa, Reaction-diffusion system approximation to degenerate parabolic systems, Nonlinearity, 20 (2007), 2319-2332. doi: 10.1088/0951-7715/20/10/003. [9] H. Murakawa, A solution of nonlinear diffusion problems by semilinear reaction-diffusion systems, Kybernetika, 45 (2009), 580-590. [10] H. Murakawa, Discrete-time approximation to nonlinear degenerate parabolic problems using a semilinear reaction-diffusion system,, preprint., (). [11] A. Okubo and S. A. Levin, "Diffusion and Ecological Problems: Modern Perspectives. Second Edition," Interdisciplinary Applied Mathematics, 14, Springer-Verlag, New York, 2001. [12] P. Y. H. Pang and M. X. Wang, Strategy and stationary pattern in a three-species predator-prey model, J. Differential Equations, 200 (2004), 245-273. doi: 10.1016/j.jde.2004.01.004. [13] N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species, J. Theor. Biol., 79 (1979), 83-99. doi: 10.1016/0022-5193(79)90258-3. [14] R. Temam, "Navier-Stokes Equation Theory and Numerical Analysis," AMS Chelsea Publishing, Providence, RI., 2001.
 [1] Yuan Lou, Wei-Ming Ni, Yaping Wu. On the global existence of a cross-diffusion system. Discrete and Continuous Dynamical Systems, 1998, 4 (2) : 193-203. doi: 10.3934/dcds.1998.4.193 [2] Yuan Lou, Wei-Ming Ni, Shoji Yotsutani. Pattern formation in a cross-diffusion system. Discrete and Continuous Dynamical Systems, 2015, 35 (4) : 1589-1607. doi: 10.3934/dcds.2015.35.1589 [3] Anotida Madzvamuse, Hussaini Ndakwo, Raquel Barreira. Stability analysis of reaction-diffusion models on evolving domains: The effects of cross-diffusion. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 2133-2170. doi: 10.3934/dcds.2016.36.2133 [4] Anotida Madzvamuse, Raquel Barreira. Domain-growth-induced patterning for reaction-diffusion systems with linear cross-diffusion. Discrete and Continuous Dynamical Systems - B, 2018, 23 (7) : 2775-2801. doi: 10.3934/dcdsb.2018163 [5] Hirofumi Izuhara, Shunsuke Kobayashi. Spatio-temporal coexistence in the cross-diffusion competition system. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 919-933. doi: 10.3934/dcdss.2020228 [6] Yuan Lou, Wei-Ming Ni, Shoji Yotsutani. On a limiting system in the Lotka--Volterra competition with cross-diffusion. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 435-458. doi: 10.3934/dcds.2004.10.435 [7] Yi Li, Chunshan Zhao. Global existence of solutions to a cross-diffusion system in higher dimensional domains. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 185-192. doi: 10.3934/dcds.2005.12.185 [8] Thomas I. Seidman. Interface conditions for a singular reaction-diffusion system. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 631-643. doi: 10.3934/dcdss.2009.2.631 [9] Yansu Ji, Jianwei Shen, Xiaochen Mao. Pattern formation of Brusselator in the reaction-diffusion system. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022103 [10] Vladimir V. Chepyzhov, Mark I. Vishik. Trajectory attractor for reaction-diffusion system with diffusion coefficient vanishing in time. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 1493-1509. doi: 10.3934/dcds.2010.27.1493 [11] Salomé Martínez, Wei-Ming Ni. Periodic solutions for a 3x 3 competitive system with cross-diffusion. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 725-746. doi: 10.3934/dcds.2006.15.725 [12] Yukio Kan-On. On the limiting system in the Shigesada, Kawasaki and Teramoto model with large cross-diffusion rates. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3561-3570. doi: 10.3934/dcds.2020161 [13] Willian Cintra, Carlos Alberto dos Santos, Jiazheng Zhou. Coexistence states of a Holling type II predator-prey system with self and cross-diffusion terms. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3913-3931. doi: 10.3934/dcdsb.2021211 [14] Jifa Jiang, Junping Shi. Dynamics of a reaction-diffusion system of autocatalytic chemical reaction. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 245-258. doi: 10.3934/dcds.2008.21.245 [15] Sze-Bi Hsu, Junping Shi, Feng-Bin Wang. Further studies of a reaction-diffusion system for an unstirred chemostat with internal storage. Discrete and Continuous Dynamical Systems - B, 2014, 19 (10) : 3169-3189. doi: 10.3934/dcdsb.2014.19.3169 [16] Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. Determination of initial data for a reaction-diffusion system with variable coefficients. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 771-801. doi: 10.3934/dcds.2019032 [17] Nicolas Bacaër, Cheikh Sokhna. A reaction-diffusion system modeling the spread of resistance to an antimalarial drug. Mathematical Biosciences & Engineering, 2005, 2 (2) : 227-238. doi: 10.3934/mbe.2005.2.227 [18] José-Francisco Rodrigues, Lisa Santos. On a constrained reaction-diffusion system related to multiphase problems. Discrete and Continuous Dynamical Systems, 2009, 25 (1) : 299-319. doi: 10.3934/dcds.2009.25.299 [19] W. E. Fitzgibbon, M. Langlais, J.J. Morgan. A reaction-diffusion system modeling direct and indirect transmission of diseases. Discrete and Continuous Dynamical Systems - B, 2004, 4 (4) : 893-910. doi: 10.3934/dcdsb.2004.4.893 [20] Haomin Huang, Mingxin Wang. The reaction-diffusion system for an SIR epidemic model with a free boundary. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 2039-2050. doi: 10.3934/dcdsb.2015.20.2039

2020 Impact Factor: 2.425