February  2012, 5(1): 159-181. doi: 10.3934/dcdss.2012.5.159

Optimal control problem for Allen-Cahn type equation associated with total variation energy

1. 

Division of Mathematical Sciences, Graduate School of Engineering, Gunma University, 4-2 Aramaki-cho, Maebashi, 371-8510, Japan

2. 

Department of Mathematics, Faculty of Education, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan

3. 

Department of Mathematics, Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, 221-8686

Received  March 2009 Revised  December 2009 Published  February 2011

In this paper we study an optimal control problem for a singular diffusion equation associated with total variation energy. The singular diffusion equation is derived as an Allen-Cahn type equation, and then the observing optimal control problem corresponds to a temperature control problem in the solid-liquid phase transition. We show the existence of an optimal control for our singular diffusion equation by applying the abstract theory. Next we consider our optimal control problem from the view-point of numerical analysis. In fact we consider the approximating problem of our equation, and we show the relationship between the original control problem and its approximating one. Moreover we show the necessary condition of an approximating optimal pair, and give a numerical experiment of our approximating control problem.
Citation: Takeshi Ohtsuka, Ken Shirakawa, Noriaki Yamazaki. Optimal control problem for Allen-Cahn type equation associated with total variation energy. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 159-181. doi: 10.3934/dcdss.2012.5.159
References:
[1]

F. Andreu, C. Ballester, V. Caselles and J. M. Mazón, Minimizing total variation flow,, Differential and Integral Equations, 14 (2001), 321.   Google Scholar

[2]

F. Andreu, C. Ballester, V. Caselles and J. M. Mazón, The Dirichlet problem for the total variation flow,, J. Funct. Anal., 180 (2001), 347.  doi: 10.1006/jfan.2000.3698.  Google Scholar

[3]

H. Attouch, "Variational Convergence for Functions and Operators,", Pitman Advanced Publishing Program, (1984).   Google Scholar

[4]

G. Bellettini, V. Caselles and M. Novaga, The total variation flow in RN, J. Differential Equations, 184 (2002), 475.  doi: 10.1006/jdeq.2001.4150.  Google Scholar

[5]

H. Brézis, "Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert,", North-Holland, (1973).   Google Scholar

[6]

E. Casas, L. A. Fernández and J. Yong, Optimal control of quasilinear parabolic equations,, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 545.   Google Scholar

[7]

L. C. Evans and R. F. Gariepy, "Measure Theory and Fine Properties of Functions,", Studies in Advanced Mathematics, (1992).   Google Scholar

[8]

L. A. Fernández, Integral state-constrained optimal control problems for some quasilinear parabolic equations,, Nonlinear Anal., 39 (2000), 977.  doi: 10.1016/S0362-546X(98)00264-8.  Google Scholar

[9]

M.-H. Giga, Y. Giga and R. Kobayashi, Very singular diffusion equations,, Proc. Taniguchi Conf. on Math., 31 (2001), 93.   Google Scholar

[10]

Y. Giga, Y. Kashima and N. Yamazaki, Local solvability of a constrained gradient system of total variation,, Abstr. Appl. Anal., 2004 (2004), 651.  doi: 10.1155/S1085337504311048.  Google Scholar

[11]

N. Kenmochi, Solvability of nonlinear evolution equations with time-dependent constraints and applications,, Bull. Fac. Education, 30 (1981), 1.   Google Scholar

[12]

N. Kenmochi and K. Shirakawa, Stability for a parabolic variational inequality associated with total variation functional,, Funkcial. Ekvac., 44 (2001), 119.   Google Scholar

[13]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasi-Linear Equations of Parabolic Type,", Translations of Mathematical Monographs, 23 (1967).   Google Scholar

[14]

U. Mosco, Convergence of convex sets and of solutions variational inequalities,, Advances Math., 3 (1969), 510.  doi: 10.1016/0001-8708(69)90009-7.  Google Scholar

[15]

T. Ohtsuka, Numerical simulations for optimal controls of an Allen-Cahn type equation with constraint,, in, 29 (2008), 329.   Google Scholar

[16]

T. Ohtsuka, K. Shirakawa and N. Yamazaki, Optimal control problems of singular diffusion equation with constraint,, Adv. Math. Sci. Appl., 18 (2008), 1.   Google Scholar

[17]

T. Ohtsuka, K. Shirakawa and N. Yamazaki, Convergence of numerical algorithm for optimal control problem of Allen-Cahn type equation with constraint,, in, 29 (2008), 441.   Google Scholar

[18]

K. Shirakawa, Asymptotic convergence of $p$-Laplace equations with constraint as $p$ tends to 1,, Math. Methods Appl. Sci., 25 (2002), 771.  doi: 10.1002/mma.314.  Google Scholar

[19]

K. Shirakawa, A. Ito, N. Yamazaki and N. Kenmochi, Asymptotic stability for evolution equations governed by subdifferentials,, in, 11 (1998), 287.   Google Scholar

[20]

K. Shirakawa and M. Kimura, Stability analysis for Allen-Cahn type equation associated with the total variation energy,, Nonlinear Anal., 60 (2005), 257.   Google Scholar

[21]

N. Yamazaki, Optimal control of nonlinear evolution equations associated with time-dependent subdifferentials and applications,, in, 86 (2009), 313.   Google Scholar

show all references

References:
[1]

F. Andreu, C. Ballester, V. Caselles and J. M. Mazón, Minimizing total variation flow,, Differential and Integral Equations, 14 (2001), 321.   Google Scholar

[2]

F. Andreu, C. Ballester, V. Caselles and J. M. Mazón, The Dirichlet problem for the total variation flow,, J. Funct. Anal., 180 (2001), 347.  doi: 10.1006/jfan.2000.3698.  Google Scholar

[3]

H. Attouch, "Variational Convergence for Functions and Operators,", Pitman Advanced Publishing Program, (1984).   Google Scholar

[4]

G. Bellettini, V. Caselles and M. Novaga, The total variation flow in RN, J. Differential Equations, 184 (2002), 475.  doi: 10.1006/jdeq.2001.4150.  Google Scholar

[5]

H. Brézis, "Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert,", North-Holland, (1973).   Google Scholar

[6]

E. Casas, L. A. Fernández and J. Yong, Optimal control of quasilinear parabolic equations,, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 545.   Google Scholar

[7]

L. C. Evans and R. F. Gariepy, "Measure Theory and Fine Properties of Functions,", Studies in Advanced Mathematics, (1992).   Google Scholar

[8]

L. A. Fernández, Integral state-constrained optimal control problems for some quasilinear parabolic equations,, Nonlinear Anal., 39 (2000), 977.  doi: 10.1016/S0362-546X(98)00264-8.  Google Scholar

[9]

M.-H. Giga, Y. Giga and R. Kobayashi, Very singular diffusion equations,, Proc. Taniguchi Conf. on Math., 31 (2001), 93.   Google Scholar

[10]

Y. Giga, Y. Kashima and N. Yamazaki, Local solvability of a constrained gradient system of total variation,, Abstr. Appl. Anal., 2004 (2004), 651.  doi: 10.1155/S1085337504311048.  Google Scholar

[11]

N. Kenmochi, Solvability of nonlinear evolution equations with time-dependent constraints and applications,, Bull. Fac. Education, 30 (1981), 1.   Google Scholar

[12]

N. Kenmochi and K. Shirakawa, Stability for a parabolic variational inequality associated with total variation functional,, Funkcial. Ekvac., 44 (2001), 119.   Google Scholar

[13]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasi-Linear Equations of Parabolic Type,", Translations of Mathematical Monographs, 23 (1967).   Google Scholar

[14]

U. Mosco, Convergence of convex sets and of solutions variational inequalities,, Advances Math., 3 (1969), 510.  doi: 10.1016/0001-8708(69)90009-7.  Google Scholar

[15]

T. Ohtsuka, Numerical simulations for optimal controls of an Allen-Cahn type equation with constraint,, in, 29 (2008), 329.   Google Scholar

[16]

T. Ohtsuka, K. Shirakawa and N. Yamazaki, Optimal control problems of singular diffusion equation with constraint,, Adv. Math. Sci. Appl., 18 (2008), 1.   Google Scholar

[17]

T. Ohtsuka, K. Shirakawa and N. Yamazaki, Convergence of numerical algorithm for optimal control problem of Allen-Cahn type equation with constraint,, in, 29 (2008), 441.   Google Scholar

[18]

K. Shirakawa, Asymptotic convergence of $p$-Laplace equations with constraint as $p$ tends to 1,, Math. Methods Appl. Sci., 25 (2002), 771.  doi: 10.1002/mma.314.  Google Scholar

[19]

K. Shirakawa, A. Ito, N. Yamazaki and N. Kenmochi, Asymptotic stability for evolution equations governed by subdifferentials,, in, 11 (1998), 287.   Google Scholar

[20]

K. Shirakawa and M. Kimura, Stability analysis for Allen-Cahn type equation associated with the total variation energy,, Nonlinear Anal., 60 (2005), 257.   Google Scholar

[21]

N. Yamazaki, Optimal control of nonlinear evolution equations associated with time-dependent subdifferentials and applications,, in, 86 (2009), 313.   Google Scholar

[1]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[2]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[3]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[4]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[5]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[6]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[7]

Tomáš Roubíček. Cahn-Hilliard equation with capillarity in actual deforming configurations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 41-55. doi: 10.3934/dcdss.2020303

[8]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[9]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[10]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[11]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[12]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[13]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[14]

Adrian Constantin, Darren G. Crowdy, Vikas S. Krishnamurthy, Miles H. Wheeler. Stuart-type polar vortices on a rotating sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 201-215. doi: 10.3934/dcds.2020263

[15]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, 2021, 20 (1) : 369-388. doi: 10.3934/cpaa.2020271

[16]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[17]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[18]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[19]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[20]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (24)
  • HTML views (0)
  • Cited by (4)

[Back to Top]