April  2012, 5(2): 257-269. doi: 10.3934/dcdss.2012.5.257

Gyrokinetic models for strongly magnetized plasmas with general magnetic shape

1. 

Laboratoire de Mathématiques de Besançon, UMR CNRS 6623, Université de Franche-Comté, 16 route de Gray, 25030 Besançon Cedex, France

Received  July 2009 Revised  February 2010 Published  September 2011

One of the main applications in plasma physics concerns the energy production through thermo-nuclear fusion. The controlled fusion requires the confinement of the plasma into a bounded domain and for this, we appeal to the magnetic confinement. Several models exist for describing the evolution of strongly magnetized plasmas. The subject matter of this paper is to provide a rigorous derivation of the guiding-center approximation in the general three dimensional setting, under the action of large stationary inhomogeneous magnetic fields.
Citation: Mihai Bostan. Gyrokinetic models for strongly magnetized plasmas with general magnetic shape. Discrete & Continuous Dynamical Systems - S, 2012, 5 (2) : 257-269. doi: 10.3934/dcdss.2012.5.257
References:
[1]

N. N. Bogoliubov and Y. A. Mitropolsky, "Asymptotic Methods in the Theory of Nonlinear Oscillations,", Translated from the second Russian edition, (1961).   Google Scholar

[2]

M. Bostan, The Vlasov-Poisson system with strong external magnetic field. Finite Larmor radius regime,, Asymptot. Anal., 61 (2009), 91.   Google Scholar

[3]

M. Bostan, The Vlasov-Maxwell system with strong initial magnetic field: Guiding-center approximation,, Multiscale Model. Simul., 6 (2007), 1026.  doi: 10.1137/070689383.  Google Scholar

[4]

M. Bostan, Transport equations with singular coefficients. Application to the gyrokinetic models in plasma physics,, research report INRIA., ().   Google Scholar

[5]

M. Bostan and T. Goudon, High-electric-field limit for the Vlasov-Maxwell-Fokker-Planck system,, Ann. Inst. H. Poincaré, 25 (2008), 1221.   Google Scholar

[6]

Y. Brenier, Convergence of the Vlasov-Poisson system to the incompressible Euler equations,, Comm. Partial Differential Equations, 25 (2000), 737.   Google Scholar

[7]

Y. Brenier, N. Mauser and M. Puel, Incompressible Euler and e-MHD as scaling limits of the Vlasov-Maxwell system,, Commun. Math. Sci., 1 (2003), 437.   Google Scholar

[8]

A. J. Brizard and T. S. Hahm, Foundations of nonlinear gyrokinetic theory,, Rev. Modern Phys., 79 (2007), 421.  doi: 10.1103/RevModPhys.79.421.  Google Scholar

[9]

E. Frénod and E. Sonnendrücker, Homogenization of the Vlasov equation and of the Vlasov-Poisson system with strong external magnetic field,, Asymptotic Anal., 18 (1998), 193.   Google Scholar

[10]

E. Frénod and E. Sonnendrücker, The finite Larmor radius approximation,, SIAM J. Math. Anal., 32 (2001), 1227.  doi: 10.1137/S0036141099364243.  Google Scholar

[11]

F. Golse and L. Saint-Raymond, The Vlasov-Poisson system with strong magnetic field,, J. Math. Pures Appl. (9), 78 (1999), 791.  doi: 10.1016/S0021-7824(99)00021-5.  Google Scholar

[12]

F. Golse and L. Saint-Raymond, The Vlasov-Poisson system with strong magnetic field in quasineutral regime,, Math. Models Methods Appl. Sci., 13 (2003), 661.  doi: 10.1142/S0218202503002647.  Google Scholar

[13]

V. Grandgirard, M. Brunetti, P. Bertrand, N. Besse, X. Garbet, P. Ghendrih, G. Manfredi, Y. Sarazin, O. Sauter, E. Sonnendrücker, J. Vaclavik and L. Villard, A drift-kinetic semi-Lagrangian 4D code for ion turbulence simulation,, J. Comput. Phys., 217 (2006), 395.  doi: 10.1016/j.jcp.2006.01.023.  Google Scholar

[14]

R. D. Hazeltine and J. D. Meiss, "Plasma Confinement,", Dover Publications, (2003).   Google Scholar

[15]

P. Morel, E. Gravier, N. Besse, A. Ghizzo and P. Bertrand, The water bag model and gyrokinetic applications,, Commun. Nonlinear Sci. Numer. Simul., 13 (2008), 11.  doi: 10.1016/j.cnsns.2007.03.016.  Google Scholar

[16]

J.-M. Rax, "Physique des Plasmas, Cours et Applications,", Dunod, (2007).   Google Scholar

[17]

M. Reed and B. Simon, "Methods of Modern Mathematical Physics. I. Functional Analysis,", Second edition, (1980).   Google Scholar

show all references

References:
[1]

N. N. Bogoliubov and Y. A. Mitropolsky, "Asymptotic Methods in the Theory of Nonlinear Oscillations,", Translated from the second Russian edition, (1961).   Google Scholar

[2]

M. Bostan, The Vlasov-Poisson system with strong external magnetic field. Finite Larmor radius regime,, Asymptot. Anal., 61 (2009), 91.   Google Scholar

[3]

M. Bostan, The Vlasov-Maxwell system with strong initial magnetic field: Guiding-center approximation,, Multiscale Model. Simul., 6 (2007), 1026.  doi: 10.1137/070689383.  Google Scholar

[4]

M. Bostan, Transport equations with singular coefficients. Application to the gyrokinetic models in plasma physics,, research report INRIA., ().   Google Scholar

[5]

M. Bostan and T. Goudon, High-electric-field limit for the Vlasov-Maxwell-Fokker-Planck system,, Ann. Inst. H. Poincaré, 25 (2008), 1221.   Google Scholar

[6]

Y. Brenier, Convergence of the Vlasov-Poisson system to the incompressible Euler equations,, Comm. Partial Differential Equations, 25 (2000), 737.   Google Scholar

[7]

Y. Brenier, N. Mauser and M. Puel, Incompressible Euler and e-MHD as scaling limits of the Vlasov-Maxwell system,, Commun. Math. Sci., 1 (2003), 437.   Google Scholar

[8]

A. J. Brizard and T. S. Hahm, Foundations of nonlinear gyrokinetic theory,, Rev. Modern Phys., 79 (2007), 421.  doi: 10.1103/RevModPhys.79.421.  Google Scholar

[9]

E. Frénod and E. Sonnendrücker, Homogenization of the Vlasov equation and of the Vlasov-Poisson system with strong external magnetic field,, Asymptotic Anal., 18 (1998), 193.   Google Scholar

[10]

E. Frénod and E. Sonnendrücker, The finite Larmor radius approximation,, SIAM J. Math. Anal., 32 (2001), 1227.  doi: 10.1137/S0036141099364243.  Google Scholar

[11]

F. Golse and L. Saint-Raymond, The Vlasov-Poisson system with strong magnetic field,, J. Math. Pures Appl. (9), 78 (1999), 791.  doi: 10.1016/S0021-7824(99)00021-5.  Google Scholar

[12]

F. Golse and L. Saint-Raymond, The Vlasov-Poisson system with strong magnetic field in quasineutral regime,, Math. Models Methods Appl. Sci., 13 (2003), 661.  doi: 10.1142/S0218202503002647.  Google Scholar

[13]

V. Grandgirard, M. Brunetti, P. Bertrand, N. Besse, X. Garbet, P. Ghendrih, G. Manfredi, Y. Sarazin, O. Sauter, E. Sonnendrücker, J. Vaclavik and L. Villard, A drift-kinetic semi-Lagrangian 4D code for ion turbulence simulation,, J. Comput. Phys., 217 (2006), 395.  doi: 10.1016/j.jcp.2006.01.023.  Google Scholar

[14]

R. D. Hazeltine and J. D. Meiss, "Plasma Confinement,", Dover Publications, (2003).   Google Scholar

[15]

P. Morel, E. Gravier, N. Besse, A. Ghizzo and P. Bertrand, The water bag model and gyrokinetic applications,, Commun. Nonlinear Sci. Numer. Simul., 13 (2008), 11.  doi: 10.1016/j.cnsns.2007.03.016.  Google Scholar

[16]

J.-M. Rax, "Physique des Plasmas, Cours et Applications,", Dunod, (2007).   Google Scholar

[17]

M. Reed and B. Simon, "Methods of Modern Mathematical Physics. I. Functional Analysis,", Second edition, (1980).   Google Scholar

[1]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[2]

Shengxin Zhu, Tongxiang Gu, Xingping Liu. AIMS: Average information matrix splitting. Mathematical Foundations of Computing, 2020, 3 (4) : 301-308. doi: 10.3934/mfc.2020012

[3]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[4]

Håkon Hoel, Gaukhar Shaimerdenova, Raúl Tempone. Multilevel Ensemble Kalman Filtering based on a sample average of independent EnKF estimators. Foundations of Data Science, 2020  doi: 10.3934/fods.2020017

[5]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[6]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[7]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[8]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[9]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[10]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[11]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[12]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[13]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[14]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[15]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[16]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[17]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[18]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[19]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[20]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]