April  2012, 5(2): 283-305. doi: 10.3934/dcdss.2012.5.283

Analysis of a high order finite volume scheme for the 1D Vlasov-Poisson system

1. 

Université Lyon, Université Lyon1, CNRS, UMR 5208 - Institut Camille Jordan, 43, Boulevard du 11 Novembre 1918, F-69622 Villeurbanne cedex, France

2. 

Université Bordeaux I, UMR CELIA CEA, CNRS et Institut de Mathmatiques de Bordeaux, 351, Cours de la Libération, F-33405 Talence cedex, France, France

Received  July 2009 Revised  December 2009 Published  September 2011

We propose a second order finite volume scheme to discretize the one-dimensional Vlasov-Poisson system with boundary conditions. For this problem, a rather general initial and boundary data lead to a unique solution with bounded variations but such a solution becomes discontinuous when the external voltage is large enough. We prove that the numerical approximation converges to the weak solution and show the efficiency of the scheme to simulate beam propagation with several particle species.
Citation: Francis Filbet, Roland Duclous, Bruno Dubroca. Analysis of a high order finite volume scheme for the 1D Vlasov-Poisson system. Discrete & Continuous Dynamical Systems - S, 2012, 5 (2) : 283-305. doi: 10.3934/dcdss.2012.5.283
References:
[1]

T. D. Arber and R. G. L. Vann, A critical comparison of Eulerian-grid-based Vlasov solvers,, J. Comput. Physics, 180 (2002), 339.  doi: 10.1006/jcph.2002.7098.  Google Scholar

[2]

N. Besse, Convergence of a semi-Lagrangian scheme for the one-dimensional Vlasov-Poisson system,, SIAM J. Numer. Anal., 42 (2004), 350.  doi: 10.1137/S0036142902410775.  Google Scholar

[3]

J. P. Boris and D. L. Book, Solution of continuity equations by the method of flux-corrected transport,, J. Comput. Phys., 20 (1976), 397.  doi: 10.1016/0021-9991(76)90091-7.  Google Scholar

[4]

J. A. Carrillo and F. Vecil, Nonoscillatory interpolation methods applied to Vlasov-based models,, SIAM J. Sci. Comput., 29 (2007), 1179.  doi: 10.1137/050644549.  Google Scholar

[5]

C. Z. Cheng and G. Knorr, The integration of the Vlasov equation in configuration space,, J. Comput. Phys., 22 (1976), 330.  doi: 10.1016/0021-9991(76)90053-X.  Google Scholar

[6]

J. Cooper and A. J. Klimas, Boundary value problems for the Vlasov-Maxwell equation in one dimension,, J. Math. Anal. Appl., 75 (1980), 306.  doi: 10.1016/0022-247X(80)90082-7.  Google Scholar

[7]

P. Degond and P.-A. Raviart, An asymptotic analysis of the Vlasov-Poisson system: The Child-Langmuir law,, Asymptotic Anal., 4 (1991), 187.   Google Scholar

[8]

R. J. DiPerna and P. L. Lions, Solutions globales d'équations du type Vlasov-Poisson,, C. R. Acad. Sci. Paris Série I Math., 307 (1988), 306.   Google Scholar

[9]

F. Filbet, Convergence d'un schéma de type volumes finis pour la resolution numérique du système de Vlasov-Poisson en dimension un,, (French) [Convergence of a finite volume scheme for the numerical solution of the one-dimensional Vlasov-Poisson system], 330 (2000), 979.   Google Scholar

[10]

F. Filbet, Convergence of a finite volume scheme for the Vlasov-Poisson system,, SIAM J. Numer. Anal. 39 (2001), 39 (2001), 1146.  doi: 10.1137/S003614290037321X.  Google Scholar

[11]

F. Filbet, E. Sonnendrücker and P. Bertrand, Conservative numerical schemes for the Vlasov equation,, J. Comput. Phys. 172 (2001), 172 (2001), 166.  doi: 10.1006/jcph.2001.6818.  Google Scholar

[12]

F. Filbet and E. Sonnendrücker, Comparison of Eulerian Vlasov solvers,, Computer Physics Communications, 150 (2003), 247.  doi: 10.1016/S0010-4655(02)00694-X.  Google Scholar

[13]

F. Filbet, Y. Guo and C.-W. Shu, Analysis of the relativistic Vlasov-Maxwell model in an interval,, Quarterly Applied Math., 63 (2005), 691.   Google Scholar

[14]

C. Greengard and P.-A. Raviart, A boundary-value problem for the stationary Vlasov-Poisson equations: The plane diode,, Comm. Pure. Appl. Math., 43 (1990), 473.  doi: 10.1002/cpa.3160430404.  Google Scholar

[15]

Y. Guo, Global weak solutions of the Vlasov-Maxwell system with boundary conditions,, Comm. Math. Phys., 154 (1993), 254.  doi: 10.1007/BF02096997.  Google Scholar

[16]

Y. Guo, C.-W. Shu and T. Zhou, The dynamics of a plane diode,, SIAM J. Math. Anal., 35 (2004), 1617.  doi: 10.1137/S0036141003421133.  Google Scholar

[17]

A. J. Klimas and W. M. Farrell, A splitting algorithm for Vlasov simulation with filamentation filtration,, J. Comput. Phys., 110 (1994), 150.  doi: 10.1006/jcph.1994.1011.  Google Scholar

[18]

F. Poupaud, Boundary value problems for the stationary Vlasov-Maxwell system,, Forum Math., 4 (1992), 499.  doi: 10.1515/form.1992.4.499.  Google Scholar

[19]

J. Schaeffer, Convergence of a difference scheme for the Vlasov-Poisson-Fokker-Planck system in one dimension,, SIAM J. Numer. Anal., 35 (1998), 1149.  doi: 10.1137/S0036142996302554.  Google Scholar

[20]

M. Shoucri and G. Knorr, Numerical integration of the Vlasov equation,, J. Comput. Phys., 14 (1974), 84.  doi: 10.1016/0021-9991(74)90006-0.  Google Scholar

[21]

Y. Zheng and A. Majda, Existence of global weak solutions to one-component Vlasov-Poisson and Fokker-Planck-Poisson systems in one space dimension with measures as initial data,, Comm. Pure Appl. Math., 47 (1994), 1365.  doi: 10.1002/cpa.3160471004.  Google Scholar

[22]

T. Nakamura and T. Yabe, Cubic interpolated propagation scheme for solving the hyper-dimensional Vlasov-Poisson equation in phase space,, Comput. Phys. Communications, 120 (1999), 122.  doi: 10.1016/S0010-4655(99)00247-7.  Google Scholar

show all references

References:
[1]

T. D. Arber and R. G. L. Vann, A critical comparison of Eulerian-grid-based Vlasov solvers,, J. Comput. Physics, 180 (2002), 339.  doi: 10.1006/jcph.2002.7098.  Google Scholar

[2]

N. Besse, Convergence of a semi-Lagrangian scheme for the one-dimensional Vlasov-Poisson system,, SIAM J. Numer. Anal., 42 (2004), 350.  doi: 10.1137/S0036142902410775.  Google Scholar

[3]

J. P. Boris and D. L. Book, Solution of continuity equations by the method of flux-corrected transport,, J. Comput. Phys., 20 (1976), 397.  doi: 10.1016/0021-9991(76)90091-7.  Google Scholar

[4]

J. A. Carrillo and F. Vecil, Nonoscillatory interpolation methods applied to Vlasov-based models,, SIAM J. Sci. Comput., 29 (2007), 1179.  doi: 10.1137/050644549.  Google Scholar

[5]

C. Z. Cheng and G. Knorr, The integration of the Vlasov equation in configuration space,, J. Comput. Phys., 22 (1976), 330.  doi: 10.1016/0021-9991(76)90053-X.  Google Scholar

[6]

J. Cooper and A. J. Klimas, Boundary value problems for the Vlasov-Maxwell equation in one dimension,, J. Math. Anal. Appl., 75 (1980), 306.  doi: 10.1016/0022-247X(80)90082-7.  Google Scholar

[7]

P. Degond and P.-A. Raviart, An asymptotic analysis of the Vlasov-Poisson system: The Child-Langmuir law,, Asymptotic Anal., 4 (1991), 187.   Google Scholar

[8]

R. J. DiPerna and P. L. Lions, Solutions globales d'équations du type Vlasov-Poisson,, C. R. Acad. Sci. Paris Série I Math., 307 (1988), 306.   Google Scholar

[9]

F. Filbet, Convergence d'un schéma de type volumes finis pour la resolution numérique du système de Vlasov-Poisson en dimension un,, (French) [Convergence of a finite volume scheme for the numerical solution of the one-dimensional Vlasov-Poisson system], 330 (2000), 979.   Google Scholar

[10]

F. Filbet, Convergence of a finite volume scheme for the Vlasov-Poisson system,, SIAM J. Numer. Anal. 39 (2001), 39 (2001), 1146.  doi: 10.1137/S003614290037321X.  Google Scholar

[11]

F. Filbet, E. Sonnendrücker and P. Bertrand, Conservative numerical schemes for the Vlasov equation,, J. Comput. Phys. 172 (2001), 172 (2001), 166.  doi: 10.1006/jcph.2001.6818.  Google Scholar

[12]

F. Filbet and E. Sonnendrücker, Comparison of Eulerian Vlasov solvers,, Computer Physics Communications, 150 (2003), 247.  doi: 10.1016/S0010-4655(02)00694-X.  Google Scholar

[13]

F. Filbet, Y. Guo and C.-W. Shu, Analysis of the relativistic Vlasov-Maxwell model in an interval,, Quarterly Applied Math., 63 (2005), 691.   Google Scholar

[14]

C. Greengard and P.-A. Raviart, A boundary-value problem for the stationary Vlasov-Poisson equations: The plane diode,, Comm. Pure. Appl. Math., 43 (1990), 473.  doi: 10.1002/cpa.3160430404.  Google Scholar

[15]

Y. Guo, Global weak solutions of the Vlasov-Maxwell system with boundary conditions,, Comm. Math. Phys., 154 (1993), 254.  doi: 10.1007/BF02096997.  Google Scholar

[16]

Y. Guo, C.-W. Shu and T. Zhou, The dynamics of a plane diode,, SIAM J. Math. Anal., 35 (2004), 1617.  doi: 10.1137/S0036141003421133.  Google Scholar

[17]

A. J. Klimas and W. M. Farrell, A splitting algorithm for Vlasov simulation with filamentation filtration,, J. Comput. Phys., 110 (1994), 150.  doi: 10.1006/jcph.1994.1011.  Google Scholar

[18]

F. Poupaud, Boundary value problems for the stationary Vlasov-Maxwell system,, Forum Math., 4 (1992), 499.  doi: 10.1515/form.1992.4.499.  Google Scholar

[19]

J. Schaeffer, Convergence of a difference scheme for the Vlasov-Poisson-Fokker-Planck system in one dimension,, SIAM J. Numer. Anal., 35 (1998), 1149.  doi: 10.1137/S0036142996302554.  Google Scholar

[20]

M. Shoucri and G. Knorr, Numerical integration of the Vlasov equation,, J. Comput. Phys., 14 (1974), 84.  doi: 10.1016/0021-9991(74)90006-0.  Google Scholar

[21]

Y. Zheng and A. Majda, Existence of global weak solutions to one-component Vlasov-Poisson and Fokker-Planck-Poisson systems in one space dimension with measures as initial data,, Comm. Pure Appl. Math., 47 (1994), 1365.  doi: 10.1002/cpa.3160471004.  Google Scholar

[22]

T. Nakamura and T. Yabe, Cubic interpolated propagation scheme for solving the hyper-dimensional Vlasov-Poisson equation in phase space,, Comput. Phys. Communications, 120 (1999), 122.  doi: 10.1016/S0010-4655(99)00247-7.  Google Scholar

[1]

Katherine Zhiyuan Zhang. Focusing solutions of the Vlasov-Poisson system. Kinetic & Related Models, 2019, 12 (6) : 1313-1327. doi: 10.3934/krm.2019051

[2]

Blanca Ayuso, José A. Carrillo, Chi-Wang Shu. Discontinuous Galerkin methods for the one-dimensional Vlasov-Poisson system. Kinetic & Related Models, 2011, 4 (4) : 955-989. doi: 10.3934/krm.2011.4.955

[3]

Jack Schaeffer. Global existence for the Vlasov-Poisson system with steady spatial asymptotic behavior. Kinetic & Related Models, 2012, 5 (1) : 129-153. doi: 10.3934/krm.2012.5.129

[4]

Gianluca Crippa, Silvia Ligabue, Chiara Saffirio. Lagrangian solutions to the Vlasov-Poisson system with a point charge. Kinetic & Related Models, 2018, 11 (6) : 1277-1299. doi: 10.3934/krm.2018050

[5]

Zili Chen, Xiuting Li, Xianwen Zhang. The two dimensional Vlasov-Poisson system with steady spatial asymptotics. Kinetic & Related Models, 2017, 10 (4) : 977-1009. doi: 10.3934/krm.2017039

[6]

Meixia Xiao, Xianwen Zhang. On global solutions to the Vlasov-Poisson system with radiation damping. Kinetic & Related Models, 2018, 11 (5) : 1183-1209. doi: 10.3934/krm.2018046

[7]

Jean Dolbeault. An introduction to kinetic equations: the Vlasov-Poisson system and the Boltzmann equation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 361-380. doi: 10.3934/dcds.2002.8.361

[8]

Hyung Ju Hwang, Jaewoo Jung, Juan J. L. Velázquez. On global existence of classical solutions for the Vlasov-Poisson system in convex bounded domains. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 723-737. doi: 10.3934/dcds.2013.33.723

[9]

Silvia Caprino, Guido Cavallaro, Carlo Marchioro. Time evolution of a Vlasov-Poisson plasma with magnetic confinement. Kinetic & Related Models, 2012, 5 (4) : 729-742. doi: 10.3934/krm.2012.5.729

[10]

Gang Li, Xianwen Zhang. A Vlasov-Poisson plasma of infinite mass with a point charge. Kinetic & Related Models, 2018, 11 (2) : 303-336. doi: 10.3934/krm.2018015

[11]

Silvia Caprino, Guido Cavallaro, Carlo Marchioro. A Vlasov-Poisson plasma with unbounded mass and velocities confined in a cylinder by a magnetic mirror. Kinetic & Related Models, 2016, 9 (4) : 657-686. doi: 10.3934/krm.2016011

[12]

Dongming Wei. 1D Vlasov-Poisson equations with electron sheet initial data. Kinetic & Related Models, 2010, 3 (4) : 729-754. doi: 10.3934/krm.2010.3.729

[13]

Boris Andreianov, Mostafa Bendahmane, Kenneth H. Karlsen, Charles Pierre. Convergence of discrete duality finite volume schemes for the cardiac bidomain model. Networks & Heterogeneous Media, 2011, 6 (2) : 195-240. doi: 10.3934/nhm.2011.6.195

[14]

Anaïs Crestetto, Nicolas Crouseilles, Mohammed Lemou. Kinetic/fluid micro-macro numerical schemes for Vlasov-Poisson-BGK equation using particles. Kinetic & Related Models, 2012, 5 (4) : 787-816. doi: 10.3934/krm.2012.5.787

[15]

Nora Aïssiouene, Marie-Odile Bristeau, Edwige Godlewski, Jacques Sainte-Marie. A combined finite volume - finite element scheme for a dispersive shallow water system. Networks & Heterogeneous Media, 2016, 11 (1) : 1-27. doi: 10.3934/nhm.2016.11.1

[16]

Robert T. Glassey, Walter A. Strauss. Perturbation of essential spectra of evolution operators and the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 457-472. doi: 10.3934/dcds.1999.5.457

[17]

Ling Hsiao, Fucai Li, Shu Wang. Combined quasineutral and inviscid limit of the Vlasov-Poisson-Fokker-Planck system. Communications on Pure & Applied Analysis, 2008, 7 (3) : 579-589. doi: 10.3934/cpaa.2008.7.579

[18]

Yemin Chen. Smoothness of classical solutions to the Vlasov-Poisson-Landau system. Kinetic & Related Models, 2008, 1 (3) : 369-386. doi: 10.3934/krm.2008.1.369

[19]

Lan Luo, Hongjun Yu. Global solutions to the relativistic Vlasov-Poisson-Fokker-Planck system. Kinetic & Related Models, 2016, 9 (2) : 393-405. doi: 10.3934/krm.2016.9.393

[20]

Kosuke Ono, Walter A. Strauss. Regular solutions of the Vlasov-Poisson-Fokker-Planck system. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 751-772. doi: 10.3934/dcds.2000.6.751

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]