February  2012, 5(1): 29-48. doi: 10.3934/dcdss.2012.5.29

Modelling phase transitions via Young measures

1. 

Mathcces, Department of Mathematics RWTH Aachen University, Pauwelsstrasse 19, D-52074 Aachen, Germany

Received  April 2009 Revised  December 2009 Published  February 2011

We consider the elastic theory of single crystals at constant temperature where the free energy density depends on the local concentration of one or more species of particles in such a way that for a given local concentration vector certain lattice geometries (phases) are preferred. Furthermore we consider possible large deformations of the crystal lattice. After deriving the physical model, we indicate by means of a suitable implicite time discretization an existence result for measure-valued solutions that relies on a new existence theorem for Young measures in infinite settings. This article is an overview of [2].
Citation: Steffen Arnrich. Modelling phase transitions via Young measures. Discrete and Continuous Dynamical Systems - S, 2012, 5 (1) : 29-48. doi: 10.3934/dcdss.2012.5.29
References:
[1]

L. Ambrosio, N. Fusco and D. Pallara, "Functions of Bounded Variation and Free Discontinuity Problems," Oxford Math. Monogr., Oxford University Press, New York, 2000.

[2]

S. Arnrich, "Maßwertige Lösungen für ein Gleichungssystem zur Beschreibung von Phasenübergängen in Kristallen," (German) [Measure valued solutions to a system of equations describing phase transitions in crystals], Ph.D thesis, University of Leipzig, 2007, http://www.mathcces.rwth-aachen.de/doku.php/staff/arnrich.

[3]

S. Arnrich, Lower semicontinuity of the surface energy functional-an alternative proof, DFG Priority Programme 1095 Analysis, Modelling and Simulation of Multiscale Problems, preprint 148, 2004.

[4]

K. Bente and Th. Doering, Solid state diffusion in sphalerites: an experimental verification of the chalcopyrite disease, European Journal of Mineralogy, 5 (1993), 465-478.

[5]

P. Blanchard and E. Brüning, "Variational Methods in Mathematical Physics. A Unified Approach," Springer, Berlin, 1992.

[6]

P. Blanchard and E. Brüning, "Mathematical Methods in Physics," Birkhäuser, Boston, 2003.

[7]

J. M. Borwein and A. S. Lewis, "Convex Analysis and Nonlinear Optimization. Theory and Examples," (CMS Books in Mathematics), Springer, New York, 2000.

[8]

M. Brokate and J.Sprekels, "Hysteresis and Phase Transitions," Springer, Berlin, 1996.

[9]

P. G. Ciarlet, "Mathematical Elasticity," North Holland, Amsterdam, 1988.

[10]

B. Dacorogna, "Direct Methods in the Calculus of Variations," Springer, Berlin, 1989.

[11]

L. C. Evans and R. F. Gariepy, "Measure Theory and Fine Property of Functions," CRC Press, Inc., London, 1992.

[12]

H. Garcke and T. Sturzenhecker, The degenerate multi-phase Stefan problem with Gibbs-Thomson law, Adv. Math. Sci. Appl., 8 (1998), 929-941.

[13]

M. Giaquinta, G. Modica and J. Soucek, "Cartesian Currents in the Calculus of Variations. I," Springer, Berlin, 1998.

[14]

H.O. Georgi, O. Häggström and C. Maess, The random geometry of equilibrium phases, in "Phase Transitions and Critical Phenomena, 18" (eds. C. Domb and J. L. Lebowitz), Academic Press, London, (2001), 1-142. arXiv:math/9905031v1

[15]

S. R. de Groot and P. Mazur, "Non-Equillibrium Thermodynamics," Dover Publications, Inc., New York, 1984.

[16]

M. E. Gurtin, "An Introduction to Continuum Mechanics," Academic Press, INC., San Diego, California, 1981.

[17]

G. A. Holzapfel, "Nonlinear Solid Mechanics," Wiley, New York, 2000.

[18]

A. Khachaturyan, Theory of structural transformations in solids, Manuscripta Mathematica, 43 (1983), 261-288.

[19]

J. S. Kirkaldy and D.J. Young, "Diffusion in the Condensed State," London: The Institute of Metals, London, 1987.

[20]

D. Kondepudi and I. Prigogine, "Modern Thermodynamics," John Wiley & Sons Ltd, Cichester, England, 1998.

[21]

S. Luckhaus, Solidification of alloys and the Gibbs-Thomson law, Bonn: SFB 256, preprint 335, 1994.

[22]

S. Luckhaus and T. Sturzenhecker, Implicit time discretization for the mean curvature flow equation, Calc. Var., 3 (1995), 253-271. doi: 10.1007/BF01205007.

[23]

S. Müller, "Variational Models for Microstructure and Phase Transitions," Lecture notes no.: 2 des Max-Planck-Instituts für Mathematik in den Naturwissenschaften zu Leipzig, Leipzig, 1998, http://www.mis.mpg.de/de/publications/andere-reihen/ln/lecturenote-0298.html.

[24]

R. W. Ogden, "Non-linear Elastic Deformations," John Wiley & Sons, Inc., New York, 1984.

[25]

L. Onsager, Reciprocal relations in irreversible processes I, Phys. Rev., 37 (1931), 405-426. doi: 10.1103/PhysRev.37.405.

[26]

L. Onsager, Reciprocal relations in irreversible processes II, Phys. Rev., 38 (1931), 2265-2279. doi: 10.1103/PhysRev.38.2265.

[27]

P. Pedregal, Optimization, relaxatian and Young measures, Bulletin (New Series) of the American Mathematical Society, 36 (1999), 27-58.

[28]

M. Slemrod and V. Roytburd, Measure-valued solutions to a problem in dynamic phase transitions, in "Nonstrictly Hyperbolic Conservation Laws (Anaheim, Calif., 1985),'' Contemp. Math., 60, Amer. Math. Soc., Providence, RI, (1987), 115-124.

[29]

A. Visintin, "Models of Phase Transitions," Birkhäuser, Boston, 1996.

[30]

S. Wang, R. Sekerka, A. Wheeler, B. Murray, C. Coriell, R. Braun and G. McFadden, Thermodynamically consistent phase field models for solid solidification, Physica D, 69 (1993), 189-200. doi: 10.1016/0167-2789(93)90189-8.

[31]

L. C. Young, Generalized curves and the existence of an attainment absolute minimum in the calculus of variations, Comptes Rendus de la Société des Sciences et des Lettres de Varsovie, classe III 30 (1937), 212-234.

[32]

W. P. Ziemer, "Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variations," Springer, New York, 1989.

show all references

References:
[1]

L. Ambrosio, N. Fusco and D. Pallara, "Functions of Bounded Variation and Free Discontinuity Problems," Oxford Math. Monogr., Oxford University Press, New York, 2000.

[2]

S. Arnrich, "Maßwertige Lösungen für ein Gleichungssystem zur Beschreibung von Phasenübergängen in Kristallen," (German) [Measure valued solutions to a system of equations describing phase transitions in crystals], Ph.D thesis, University of Leipzig, 2007, http://www.mathcces.rwth-aachen.de/doku.php/staff/arnrich.

[3]

S. Arnrich, Lower semicontinuity of the surface energy functional-an alternative proof, DFG Priority Programme 1095 Analysis, Modelling and Simulation of Multiscale Problems, preprint 148, 2004.

[4]

K. Bente and Th. Doering, Solid state diffusion in sphalerites: an experimental verification of the chalcopyrite disease, European Journal of Mineralogy, 5 (1993), 465-478.

[5]

P. Blanchard and E. Brüning, "Variational Methods in Mathematical Physics. A Unified Approach," Springer, Berlin, 1992.

[6]

P. Blanchard and E. Brüning, "Mathematical Methods in Physics," Birkhäuser, Boston, 2003.

[7]

J. M. Borwein and A. S. Lewis, "Convex Analysis and Nonlinear Optimization. Theory and Examples," (CMS Books in Mathematics), Springer, New York, 2000.

[8]

M. Brokate and J.Sprekels, "Hysteresis and Phase Transitions," Springer, Berlin, 1996.

[9]

P. G. Ciarlet, "Mathematical Elasticity," North Holland, Amsterdam, 1988.

[10]

B. Dacorogna, "Direct Methods in the Calculus of Variations," Springer, Berlin, 1989.

[11]

L. C. Evans and R. F. Gariepy, "Measure Theory and Fine Property of Functions," CRC Press, Inc., London, 1992.

[12]

H. Garcke and T. Sturzenhecker, The degenerate multi-phase Stefan problem with Gibbs-Thomson law, Adv. Math. Sci. Appl., 8 (1998), 929-941.

[13]

M. Giaquinta, G. Modica and J. Soucek, "Cartesian Currents in the Calculus of Variations. I," Springer, Berlin, 1998.

[14]

H.O. Georgi, O. Häggström and C. Maess, The random geometry of equilibrium phases, in "Phase Transitions and Critical Phenomena, 18" (eds. C. Domb and J. L. Lebowitz), Academic Press, London, (2001), 1-142. arXiv:math/9905031v1

[15]

S. R. de Groot and P. Mazur, "Non-Equillibrium Thermodynamics," Dover Publications, Inc., New York, 1984.

[16]

M. E. Gurtin, "An Introduction to Continuum Mechanics," Academic Press, INC., San Diego, California, 1981.

[17]

G. A. Holzapfel, "Nonlinear Solid Mechanics," Wiley, New York, 2000.

[18]

A. Khachaturyan, Theory of structural transformations in solids, Manuscripta Mathematica, 43 (1983), 261-288.

[19]

J. S. Kirkaldy and D.J. Young, "Diffusion in the Condensed State," London: The Institute of Metals, London, 1987.

[20]

D. Kondepudi and I. Prigogine, "Modern Thermodynamics," John Wiley & Sons Ltd, Cichester, England, 1998.

[21]

S. Luckhaus, Solidification of alloys and the Gibbs-Thomson law, Bonn: SFB 256, preprint 335, 1994.

[22]

S. Luckhaus and T. Sturzenhecker, Implicit time discretization for the mean curvature flow equation, Calc. Var., 3 (1995), 253-271. doi: 10.1007/BF01205007.

[23]

S. Müller, "Variational Models for Microstructure and Phase Transitions," Lecture notes no.: 2 des Max-Planck-Instituts für Mathematik in den Naturwissenschaften zu Leipzig, Leipzig, 1998, http://www.mis.mpg.de/de/publications/andere-reihen/ln/lecturenote-0298.html.

[24]

R. W. Ogden, "Non-linear Elastic Deformations," John Wiley & Sons, Inc., New York, 1984.

[25]

L. Onsager, Reciprocal relations in irreversible processes I, Phys. Rev., 37 (1931), 405-426. doi: 10.1103/PhysRev.37.405.

[26]

L. Onsager, Reciprocal relations in irreversible processes II, Phys. Rev., 38 (1931), 2265-2279. doi: 10.1103/PhysRev.38.2265.

[27]

P. Pedregal, Optimization, relaxatian and Young measures, Bulletin (New Series) of the American Mathematical Society, 36 (1999), 27-58.

[28]

M. Slemrod and V. Roytburd, Measure-valued solutions to a problem in dynamic phase transitions, in "Nonstrictly Hyperbolic Conservation Laws (Anaheim, Calif., 1985),'' Contemp. Math., 60, Amer. Math. Soc., Providence, RI, (1987), 115-124.

[29]

A. Visintin, "Models of Phase Transitions," Birkhäuser, Boston, 1996.

[30]

S. Wang, R. Sekerka, A. Wheeler, B. Murray, C. Coriell, R. Braun and G. McFadden, Thermodynamically consistent phase field models for solid solidification, Physica D, 69 (1993), 189-200. doi: 10.1016/0167-2789(93)90189-8.

[31]

L. C. Young, Generalized curves and the existence of an attainment absolute minimum in the calculus of variations, Comptes Rendus de la Société des Sciences et des Lettres de Varsovie, classe III 30 (1937), 212-234.

[32]

W. P. Ziemer, "Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variations," Springer, New York, 1989.

[1]

Radu Ioan Boţ, Sorin-Mihai Grad. On linear vector optimization duality in infinite-dimensional spaces. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 407-415. doi: 10.3934/naco.2011.1.407

[2]

Savin Treanţă. On a class of differential quasi-variational-hemivariational inequalities in infinite-dimensional Banach spaces. Evolution Equations and Control Theory, 2022, 11 (3) : 827-836. doi: 10.3934/eect.2021027

[3]

Eleonora Bardelli, Andrea Carlo Giuseppe Mennucci. Probability measures on infinite-dimensional Stiefel manifolds. Journal of Geometric Mechanics, 2017, 9 (3) : 291-316. doi: 10.3934/jgm.2017012

[4]

Armin Lechleiter, Marcel Rennoch. Non-linear Tikhonov regularization in Banach spaces for inverse scattering from anisotropic penetrable media. Inverse Problems and Imaging, 2017, 11 (1) : 151-176. doi: 10.3934/ipi.2017008

[5]

Satoshi Ito, Soon-Yi Wu, Ting-Jang Shiu, Kok Lay Teo. A numerical approach to infinite-dimensional linear programming in $L_1$ spaces. Journal of Industrial and Management Optimization, 2010, 6 (1) : 15-28. doi: 10.3934/jimo.2010.6.15

[6]

Der-Chen Chang, Jie Xiao. $L^q$-Extensions of $L^p$-spaces by fractional diffusion equations. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 1905-1920. doi: 10.3934/dcds.2015.35.1905

[7]

Björn Augner, Birgit Jacob. Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems. Evolution Equations and Control Theory, 2014, 3 (2) : 207-229. doi: 10.3934/eect.2014.3.207

[8]

Kurt Falk, Marc Kesseböhmer, Tobias Henrik Oertel-Jäger, Jens D. M. Rademacher, Tony Samuel. Preface: Diffusion on fractals and non-linear dynamics. Discrete and Continuous Dynamical Systems - S, 2017, 10 (2) : i-iv. doi: 10.3934/dcdss.201702i

[9]

Samir Adly, Ba Khiet Le. Unbounded state-dependent sweeping processes with perturbations in uniformly convex and q-uniformly smooth Banach spaces. Numerical Algebra, Control and Optimization, 2018, 8 (1) : 81-95. doi: 10.3934/naco.2018005

[10]

Ulisse Stefanelli. Analysis of a variable time-step discretization for a phase transition model with micro-movements. Communications on Pure and Applied Analysis, 2006, 5 (3) : 659-673. doi: 10.3934/cpaa.2006.5.659

[11]

G. Dal Maso, Antonio DeSimone, M. G. Mora, M. Morini. Time-dependent systems of generalized Young measures. Networks and Heterogeneous Media, 2007, 2 (1) : 1-36. doi: 10.3934/nhm.2007.2.1

[12]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[13]

Christoph Walker. Age-dependent equations with non-linear diffusion. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 691-712. doi: 10.3934/dcds.2010.26.691

[14]

Max E. Gilmore, Chris Guiver, Hartmut Logemann. Sampled-data integral control of multivariable linear infinite-dimensional systems with input nonlinearities. Mathematical Control and Related Fields, 2022, 12 (1) : 17-47. doi: 10.3934/mcrf.2021001

[15]

Peng Chen, Linfeng Mei, Xianhua Tang. Nonstationary homoclinic orbit for an infinite-dimensional fractional reaction-diffusion system. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021279

[16]

Tomás Caraballo, David Cheban. On the structure of the global attractor for infinite-dimensional non-autonomous dynamical systems with weak convergence. Communications on Pure and Applied Analysis, 2013, 12 (1) : 281-302. doi: 10.3934/cpaa.2013.12.281

[17]

Birgit Jacob, Hafida Laasri. Well-posedness of infinite-dimensional non-autonomous passive boundary control systems. Evolution Equations and Control Theory, 2021, 10 (2) : 385-409. doi: 10.3934/eect.2020072

[18]

J. C. Robinson. A topological time-delay embedding theorem for infinite-dimensional cocycle dynamical systems. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 731-741. doi: 10.3934/dcdsb.2008.9.731

[19]

Sergey V Lototsky, Henry Schellhorn, Ran Zhao. An infinite-dimensional model of liquidity in financial markets. Probability, Uncertainty and Quantitative Risk, 2021, 6 (2) : 117-138. doi: 10.3934/puqr.2021006

[20]

Robert Magnus, Olivier Moschetta. The non-linear Schrödinger equation with non-periodic potential: infinite-bump solutions and non-degeneracy. Communications on Pure and Applied Analysis, 2012, 11 (2) : 587-626. doi: 10.3934/cpaa.2012.11.587

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (95)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]