• Previous Article
    High-order dimensionally split Lagrange-remap schemes for ideal magnetohydrodynamics
  • DCDS-S Home
  • This Issue
  • Next Article
    Simulations on wave propagation in fluctuating fusion plasmas for Reflectometry applications and new developments
April  2012, 5(2): 329-343. doi: 10.3934/dcdss.2012.5.329

Models and simulations for the laser-plasma interaction and the three-wave coupling problem

1. 

CEA, DAM, DIF. Bruyeres, 91297 Arpajon, France

Received  September 2009 Revised  March 2010 Published  September 2011

We are concerned here with the modelling of the laser propagation and its interaction with a plasma. In a first part, we recall first some features related to the paraxial approximation of the solution of the wave equation and the coupling model between the plasma hydrodynamics and the laser propagation. In a second part, we consider the coupling with the ion acoustic waves which has to be accounted to model the Brillouin instability. It leads to the three-wave coupling problem which is a crucial in plasma physics. We give some mathematical properties of this system specially in the case when the speed of light is assumed to be infinite. We also propose a numerical method based on a implicit time discretization. It is illustrated on test cases.
Citation: Remi Sentis. Models and simulations for the laser-plasma interaction and the three-wave coupling problem. Discrete and Continuous Dynamical Systems - S, 2012, 5 (2) : 329-343. doi: 10.3934/dcdss.2012.5.329
References:
[1]

Ph. Ballereau, M. Casanova, F. Duboc, D. Dureau, H. Jourdren, P. Loiseau, J. Metral, O. Morice and R. Sentis, Simulation of the paraxial laser propagation coupled with hydrodynamics in 3D geometry, J. Sci. Comp., 33 (2007), 1-24. doi: 10.1007/s10915-007-9135-y.

[2]

P. G. Baines, The stability of planetary waves on a sphere, J. Fluid Mech., 73 (1976), 193-213. doi: 10.1017/S0022112076001341.

[3]

T. J. M. Boyd and J. G. Turner, Lagrangian studies of plasma wave interaction, 5 (1972), 881-896.

[4]

M. Casanova, et al., Self-generated loss of coherency in Brillouin scattering and reduction of reflectivity, Phys. Review Letters, 54 (1985), 2230-2233. doi: 10.1103/PhysRevLett.54.2230.

[5]

M. Colin and T. Colin, On a quasilinear Zakharov system describing laser-plasma interaction, Differential Integral Equations, 17 (2004), 297-330.

[6]

S. Desroziers, F. Nataf and R. Sentis, Simulation of laser propagation in a plasma with a frequency wave equation, J. Comp. Physics, 227 (2008), 2610-2625. doi: 10.1016/j.jcp.2007.11.008.

[7]

M. Doumic, F. Duboc, F. Golse and R. Sentis, Simulation of laser beam propagation with a paraxial model in a tilted frame, J. Comp. Physics, 228 (2009), 861-880. doi: 10.1016/j.jcp.2008.10.009.

[8]

L. Divol and R. L. Berger, et al., Three-dimensional modeling of laser-plasma interaction: Benchmarking our predictive modeling tools versus experiments, Phys. of Plasmas, 15 (2008), 056313.

[9]

B. B. Kadomtsev, "Plasma Turbulence," translated from the Russian, Academic Press, 1965.

[10]

J. B. Keller and R. M. Lewis, Asymptotic methods for partial differential equations: The reduced wave equation and Maxwell's equations, in "Surveys in Applied Mathematics, Vol.1" (eds. J. B. Keller, W. McLaughlin and G. C. Papanicolaou), Plenum, New York, (1995), 1-82.

[11]

W. L. Kruer, "The Physics of Laser-Plasma Interaction," Addison-Wesley, New York, 1988.

[12]

P. Loiseau, et al., Laser-beam smoothing induced by stimulated Brillouin scattering in an inhomogeneous plasma, Physical Review Letters, 97 (2006), 205001. doi: 10.1103/PhysRevLett.97.205001.

[13]

G. Metivier and R. Sentis, On the Boyd-Kadomtsev System and its asymptotic limit, Comm. Math. Physics, to be published (2011).

[14]

Ph. Mounaix, D. Pesme and M. Casanova, Nonlinear reflectivity of an inhomogeneous plasma, Phys. Review E, 55 (1997), 4653. doi: 10.1103/PhysRevE.55.4653.

[15]

S. Novikov, S. V. Manakov, L. P. Pitaevskiĭ and V. E. Zakharov, "Theory of Solitons. The Inverse Scattering Method," Contemporary Soviet Mathematics, Consultants Bureau [Plenum], New York, 1984.

[16]

D. Pesme, Interaction collisionnelle et collective, in "La Fusion par Confinement Inertiel I. Interaction Laser-Matière" (ed. R. Dautray-Watteau), Eyrolles, Paris, 1995.

[17]

R. Sentis, On the Boyd-Kadomtsev system for the three-wave coupling problem, C. R. Math. Ac. Sciences Paris, 347 (2009), 933-938.

[18]

R. Sentis, Mathematical models for laser-plasma interaction, M2AN Math. Modelling Num. Analysis, 39 (2005), 275-318.

show all references

References:
[1]

Ph. Ballereau, M. Casanova, F. Duboc, D. Dureau, H. Jourdren, P. Loiseau, J. Metral, O. Morice and R. Sentis, Simulation of the paraxial laser propagation coupled with hydrodynamics in 3D geometry, J. Sci. Comp., 33 (2007), 1-24. doi: 10.1007/s10915-007-9135-y.

[2]

P. G. Baines, The stability of planetary waves on a sphere, J. Fluid Mech., 73 (1976), 193-213. doi: 10.1017/S0022112076001341.

[3]

T. J. M. Boyd and J. G. Turner, Lagrangian studies of plasma wave interaction, 5 (1972), 881-896.

[4]

M. Casanova, et al., Self-generated loss of coherency in Brillouin scattering and reduction of reflectivity, Phys. Review Letters, 54 (1985), 2230-2233. doi: 10.1103/PhysRevLett.54.2230.

[5]

M. Colin and T. Colin, On a quasilinear Zakharov system describing laser-plasma interaction, Differential Integral Equations, 17 (2004), 297-330.

[6]

S. Desroziers, F. Nataf and R. Sentis, Simulation of laser propagation in a plasma with a frequency wave equation, J. Comp. Physics, 227 (2008), 2610-2625. doi: 10.1016/j.jcp.2007.11.008.

[7]

M. Doumic, F. Duboc, F. Golse and R. Sentis, Simulation of laser beam propagation with a paraxial model in a tilted frame, J. Comp. Physics, 228 (2009), 861-880. doi: 10.1016/j.jcp.2008.10.009.

[8]

L. Divol and R. L. Berger, et al., Three-dimensional modeling of laser-plasma interaction: Benchmarking our predictive modeling tools versus experiments, Phys. of Plasmas, 15 (2008), 056313.

[9]

B. B. Kadomtsev, "Plasma Turbulence," translated from the Russian, Academic Press, 1965.

[10]

J. B. Keller and R. M. Lewis, Asymptotic methods for partial differential equations: The reduced wave equation and Maxwell's equations, in "Surveys in Applied Mathematics, Vol.1" (eds. J. B. Keller, W. McLaughlin and G. C. Papanicolaou), Plenum, New York, (1995), 1-82.

[11]

W. L. Kruer, "The Physics of Laser-Plasma Interaction," Addison-Wesley, New York, 1988.

[12]

P. Loiseau, et al., Laser-beam smoothing induced by stimulated Brillouin scattering in an inhomogeneous plasma, Physical Review Letters, 97 (2006), 205001. doi: 10.1103/PhysRevLett.97.205001.

[13]

G. Metivier and R. Sentis, On the Boyd-Kadomtsev System and its asymptotic limit, Comm. Math. Physics, to be published (2011).

[14]

Ph. Mounaix, D. Pesme and M. Casanova, Nonlinear reflectivity of an inhomogeneous plasma, Phys. Review E, 55 (1997), 4653. doi: 10.1103/PhysRevE.55.4653.

[15]

S. Novikov, S. V. Manakov, L. P. Pitaevskiĭ and V. E. Zakharov, "Theory of Solitons. The Inverse Scattering Method," Contemporary Soviet Mathematics, Consultants Bureau [Plenum], New York, 1984.

[16]

D. Pesme, Interaction collisionnelle et collective, in "La Fusion par Confinement Inertiel I. Interaction Laser-Matière" (ed. R. Dautray-Watteau), Eyrolles, Paris, 1995.

[17]

R. Sentis, On the Boyd-Kadomtsev system for the three-wave coupling problem, C. R. Math. Ac. Sciences Paris, 347 (2009), 933-938.

[18]

R. Sentis, Mathematical models for laser-plasma interaction, M2AN Math. Modelling Num. Analysis, 39 (2005), 275-318.

[1]

Ademir Pastor. On three-wave interaction Schrödinger systems with quadratic nonlinearities: Global well-posedness and standing waves. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2217-2242. doi: 10.3934/cpaa.2019100

[2]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3685-3701. doi: 10.3934/dcdss.2020466

[3]

Oǧul Esen, Serkan Sütlü. Matched pair analysis of the Vlasov plasma. Journal of Geometric Mechanics, 2021, 13 (2) : 209-246. doi: 10.3934/jgm.2021011

[4]

Kazuhiro Kurata, Yuki Osada. Asymptotic expansion of the ground state energy for nonlinear Schrödinger system with three wave interaction. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4239-4251. doi: 10.3934/cpaa.2021157

[5]

Kazuhiro Kurata, Yuki Osada. Variational problems associated with a system of nonlinear Schrödinger equations with three wave interaction. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1511-1547. doi: 10.3934/dcdsb.2021100

[6]

Tian Ma, Shouhong Wang. Unified field equations coupling four forces and principle of interaction dynamics. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 1103-1138. doi: 10.3934/dcds.2015.35.1103

[7]

Baptiste Fedele, Claudia Negulescu. Numerical study of an anisotropic Vlasov equation arising in plasma physics. Kinetic and Related Models, 2018, 11 (6) : 1395-1426. doi: 10.3934/krm.2018055

[8]

Elena Bonetti, Giovanna Bonfanti, Riccarda Rossi. Analysis of a model coupling volume and surface processes in thermoviscoelasticity. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2349-2403. doi: 10.3934/dcds.2015.35.2349

[9]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[10]

Imen Manoubi. Theoretical and numerical analysis of the decay rate of solutions to a water wave model with a nonlocal viscous dispersive term with Riemann-Liouville half derivative. Discrete and Continuous Dynamical Systems - B, 2014, 19 (9) : 2837-2863. doi: 10.3934/dcdsb.2014.19.2837

[11]

Jong-Shenq Guo, Hirokazu Ninomiya, Chin-Chin Wu. Existence of a rotating wave pattern in a disk for a wave front interaction model. Communications on Pure and Applied Analysis, 2013, 12 (2) : 1049-1063. doi: 10.3934/cpaa.2013.12.1049

[12]

Qiang Du, M. D. Gunzburger, L. S. Hou, J. Lee. Analysis of a linear fluid-structure interaction problem. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 633-650. doi: 10.3934/dcds.2003.9.633

[13]

José A. Carrillo, Bertram Düring, Lisa Maria Kreusser, Carola-Bibiane Schönlieb. Equilibria of an anisotropic nonlocal interaction equation: Analysis and numerics. Discrete and Continuous Dynamical Systems, 2021, 41 (8) : 3985-4012. doi: 10.3934/dcds.2021025

[14]

Ting-Hui Yang, Weinian Zhang, Kaijen Cheng. Global dynamics of three species omnivory models with Lotka-Volterra interaction. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2867-2881. doi: 10.3934/dcdsb.2016077

[15]

Christophe Chalons. Theoretical and numerical aspects of the interfacial coupling: The scalar Riemann problem and an application to multiphase flows. Networks and Heterogeneous Media, 2010, 5 (3) : 507-524. doi: 10.3934/nhm.2010.5.507

[16]

Jing Zhang. The analyticity and exponential decay of a Stokes-wave coupling system with viscoelastic damping in the variational framework. Evolution Equations and Control Theory, 2017, 6 (1) : 135-154. doi: 10.3934/eect.2017008

[17]

Avner Friedman, Bei Hu, Chuan Xue. A three dimensional model of wound healing: Analysis and computation. Discrete and Continuous Dynamical Systems - B, 2012, 17 (8) : 2691-2712. doi: 10.3934/dcdsb.2012.17.2691

[18]

Jorge A. Esquivel-Avila. Qualitative analysis of a nonlinear wave equation. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 787-804. doi: 10.3934/dcds.2004.10.787

[19]

Hua Zhong, Xiao-Ping Wang, Shuyu Sun. A numerical study of three-dimensional droplets spreading on chemically patterned surfaces. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2905-2926. doi: 10.3934/dcdsb.2016079

[20]

Djemaa Messaoudi, Osama Said Ahmed, Komivi Souley Agbodjan, Ting Cheng, Daijun Jiang. Numerical recovery of magnetic diffusivity in a three dimensional spherical dynamo equation. Inverse Problems and Imaging, 2020, 14 (5) : 797-818. doi: 10.3934/ipi.2020037

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (59)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]