\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

High-order dimensionally split Lagrange-remap schemes for ideal magnetohydrodynamics

Abstract Related Papers Cited by
  • We first propose a new class of high-order finite volume schemes for solving the 1-D ideal magnetohydrodynamics equations that is particularly well-suited for modern computer architectures. Applicable to arbitrary equations of state, these schemes, based on a Lagrange-remap approach, are high-order accurate in both space and time in the non-linear regime. A multidimensional extension on 2-D Cartesian grids using a high-order dimensional splitting technique is then proposed. Numerical results up to fourth-order on smooth and non-smooth test problems are also provided.
    Mathematics Subject Classification: Primary: 35L75, 76W05; Secondary: 35L65.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    D. S. Balsara, Second order accurate schemes for magnetohydrodynamics with divergence-free reconstruction, Astrophys. J. Suppl. Ser., 151 (2004), 149-184.doi: 10.1086/381377.

    [2]

    W. Dai and P. R. Woodward, An approximate Riemann solver for ideal magnetohydrodynamics, J. Comp. Phys., 111 (1994), 354-372.doi: 10.1006/jcph.1994.1069.

    [3]

    D. Ryu and T. W. Jones, Numerical magnetohydrodynamics in astrophysics: Algorithm and tests for one-dimensional flow, The Astrophys. J., 442 (1995), 228-258.doi: 10.1086/175437.

    [4]

    S. A. E. G. Falle, S. S. Komissarov and P. Joarder, A multidimensional upwind scheme for magnetohydrodynamics, Monthly Notices of the Royal Astronomical Society, 297 (1998), 265-277.doi: 10.1046/j.1365-8711.1998.01506.x.

    [5]

    R. K. Crockett, P. Colella, R. T. Fisher, R. J. Klein and C. I. McKee, An unsplit cell-centered Godunov method for ideal MHD, J. Comp. Phys., 203 (2005), 422-448.doi: 10.1016/j.jcp.2004.08.021.

    [6]

    D. S. Balsara, Divergence-free reconstruction of magnetic fields and WENO schemes for magnetohydrodynamics, J. Comp. Phys., 228 (2008), 5040-5056.doi: 10.1016/j.jcp.2009.03.038.

    [7]

    A. Zachary, A. Malagoli and P. Colella, A higher-order Godunov method for multidimensional ideal magnetohydrodynamics, SIAM J. Sci. Comp., 15 (1994), 263-284.doi: 10.1137/0915019.

    [8]

    G.-S. Jiang and C.-C. Wu, A high-order WENO finite difference scheme for the equation of ideal magnetohydrodynamics, J. Comp. Phys., 150 (1999), 561-594.doi: 10.1006/jcph.1999.6207.

    [9]

    D. S. Balsara, T. Rumpf, M. Dumbser and C.-D. Munz, Efficient, high-accuracy ADER-WENO schemes for hydrodynamics and divergence-free magnetohydrodynamics, J. Comp. Phys., 228 (2009), 2480-2516.doi: 10.1016/j.jcp.2008.12.003.

    [10]

    F. Duboc, C. Enaux, S. Jaouen, H. Jourdren and M. Wolff, High-order dimensionally split Lagrange-remap schemes for compressible hydrodynamics, C. R. Acad. Sci. Paris, 348 (2010), 105-110.doi: 10.1016/j.crma.2009.12.008.

    [11]

    T. D. Arber, A. W. Longbottom, C. L. Gerrard and A. M. Milne, A staggered grid, Lagrangian-Eulerian remap code for 3-D MHD simulations, J. Comp. Phys., 171 (2001), 151-181.doi: 10.1006/jcph.2001.6780.

    [12]

    S. Del Pino and H. Jourdren, Arbitrary high-order schemes for the linear advection and wave equations: Application to hydrodynamics and aeroacoustics, C. R. Math. Acad. Sci. Paris, 342 (2006), 441-446.doi: 10.1016/j.crma.2006.01.013.

    [13]

    P. Colella, Multidimensional upwind methods for hyperbolic conservation laws, J. Comp. Phys., 87 (1990), 171-200.doi: 10.1016/0021-9991(90)90233-Q.

    [14]

    J. U. Brackbill and D. C. Barnes, The effect of nonzero $\nabla \cdot B$ on the numerical solution of the magnetohydrodynamics equations, J. Comp. Phys., 35 (1980), 426-430.doi: 10.1016/0021-9991(80)90079-0.

    [15]

    S. H. Brecht, J. G. Lyon, J. A. Fedder and K. Hain, A simulation study of east-west IMF effects on the magnetosphere, Geophysical Research Letter, 8 (1981), 397-400.doi: 10.1029/GL008i004p00397.

    [16]

    C. R. DeVore, Flux-corrected transport techniques for multidimensional compressible magnetohydrodynamics, J. Comp. Phys., 92 (1991), 142-160.doi: 10.1016/0021-9991(91)90295-V.

    [17]

    W. Dai and P. R. Woodward, On the divergence-free condition and conservation laws in numerical simulations for supersonic magnetohydrodynamic flows, Astrophys. J., 494 (1998), 317-335.doi: 10.1086/305176.

    [18]

    D. Ryu, F. Miniati, T. W. Jones and A. Frank, A divergence-free upwind code for multidimensional magnetohydrodynamic flows, The Astrophys. J., 509 (1998), 244-255.doi: 10.1086/306481.

    [19]

    D. S. Balsara and D. S. Spicer, Maintaining pressure positivity in magnetohydrodynamic simulations, J. Comp. Phys., 148 (1999), 133-148.doi: 10.1006/jcph.1998.6108.

    [20]

    D. S. Balsara and D. S. Spicer, A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations, J. Comp. Phys., 149 (1999), 270-292.doi: 10.1006/jcph.1998.6153.

    [21]

    P. Londrillo and L. DelZanna, On the divergence-free condition in Godunov-type schemes for ideal magnetohydrodynamics: The upwind constrained transport method, J. Comp. Phys., 195 (2004), 17-48.doi: 10.1016/j.jcp.2003.09.016.

    [22]

    M. Torrilhon, Locally divergence-preserving upwind finite volume schemes for magnetohydrodynamic equations, SIAM J. Sci. Comp., 26 (2005), 1166-1191.doi: 10.1137/S1064827503426401.

    [23]

    K. G. Powell, An approximate Riemann solver for MHD (that works in more than one dimension), ICASE Report 94-24, 1994.

    [24]

    A. Dedner, F. Kemm, D. Kröner, C.-D. Munz, T. Schnitzer and M. Wesenberg, Hyperbolic divergence cleaning for MHD equations, J. Comp. Phys., 175 (2002), 645-673.doi: 10.1006/jcph.2001.6961.

    [25]

    G. Tóth, The $\nabla \cdot B=0$ constraint in shock-capturing magnetohydrodynamics codes, J. Comp. Phys., 161 (2000), 605-652.doi: 10.1006/jcph.2000.6519.

    [26]

    C.-W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, In "Advanced Numerical Approximation of Nonlinear Hyperbolic Equations" (Cetraro, 1997), 325-432, Lecture Notes in Math., 1697, Springer, Berlin, 1998.

    [27]

    E. Forest and R. D. Ruth, Fourth-order symplectic integration, Physica D, 43 (1990), 105-117.

    [28]

    R. I. McLachlan and P. Atela, The accuracy of symplectic integrators, Nonlinearity, 5 (1992), 541-562.doi: 10.1088/0951-7715/5/2/011.

    [29]

    S. A. Chin, Forward and non-forward symplectic integrators in solving classical dynamics problems, Internat. J. of Comp. Math., 84 (2007), 729-747.doi: 10.1080/00207160701458476.

    [30]

    A. Cook, Artificial fluid properties for large-eddy simulation of compressible turbulent mixing, Phys. of Fluids, 19 (2007).

    [31]

    N. E. L. Haugen, Hydrodynamic and hydromagnetic energy spectra from large eddy simulations, Phys. of Fluids, 18 (2006).

    [32]

    M. Germano, U. Piomelli, P. Moin and W. Cabot, A dynamic subgrid-scale eddy-viscosity model, Phys. of Fluids, 3 (1991), 1760-1765.doi: 10.1063/1.857955.

    [33]

    P. Picard, Reduction and exact solutions of the ideal magnetohydrodynamics equations, Mathemat. Phys. e-prints, 2005, arXiv:math-ph/0509048.

    [34]

    A. Orszag and C. M. Tang, Small-scale structure of two-dimensional magnetohydrodynamic turbulence, J. Fluid. Mech., 90 (1979), 129-143.doi: 10.1017/S002211207900210X.

    [35]

    R. B. Dahlburg and J. M. Picone, Evolution of the Orszag-Tang vortex system in a compressible medium. I. Initial average subsonic flow, Phys. Fluids B, 1 (1989), 2153-2171.doi: 10.1063/1.859081.

    [36]

    R. B. Dahlburg and J. M. Picone, Evolution of the Orszag-Tang vortex system in a compressible medium. II. Supersonic flow, Phys. Fluids B, 3 (1991), 29-44.doi: 10.1063/1.859953.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(328) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return