June  2012, 5(3): 427-434. doi: 10.3934/dcdss.2012.5.427

Some identities on weighted Sobolev spaces

1. 

Laboratoire de Mathématiques de Versailles, Université de Versailles Saint-Quentin-en-Yvelines, 45, Avenue des Etats-Unis, 78035, Versailles Cedex, France

2. 

Université de Constantine, Départment de mathématiques, Route ain el bey, 25000, Constantine, Algeria

Received  September 2010 Revised  January 2011 Published  October 2011

In this paper we compare some families of weigthted Sobolev spaces which are commonly used for solving partial differential equations in unbounded domains. The first result is an identity between two particular spaces. The second result is another identity which generalises partially the first one.
Citation: Tahar Z. Boulmezaoud, Amel Kourta. Some identities on weighted Sobolev spaces. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 427-434. doi: 10.3934/dcdss.2012.5.427
References:
[1]

C. Amrouche, V. Girault and J. Giroire, Weighted Sobolev spaces for Laplace's equation in $R^n$, J. Math. Pures Appl. (9), 73 (1994), 579-606.

[2]

T. Z. Boulmezaoud and M. Medjden, Vorticity-vector potential formulations of the Stokes equations in the half-space, Mathematical Methods in the Applied Sciences, 28 (2005), 903-915. doi: 10.1002/mma.596.

[3]

T. Z. Boulmezaoud, Espaces de Sobolev avec poids pour l'équation de Laplace dans le demi-espace, Comptes Rendus de l'Académie des Sciences Série I Mathématiques, 328 (1999), 221-226.

[4]

T. Z. Boulmezaoud, On the Laplace operator and on the vector potential problems in the half-space: An approach using weighted spaces, Mathematical Methods in the Applied Sciences, 26 (2003), 633-669. doi: 10.1002/mma.369.

[5]

T. Z. Boulmezaoud and U. Razafison, On the steady Oseen problem in the whole space, Hiroshima Mathematical Journal, 35 (2005), 371-401.

[6]

R. Farwig and H. Sohr, An approach to resolvent estimates for the Stokes equations in $L^q$-spaces, In "The Navier-Stokes Equations II-Theory and Numerical Methods" (Oberwolfach, 1991), Lecture Notes in Math., 1530, Springer, Berlin, (1992), 97-110.

[7]

J. Giroire, "Etude de Quelques Problèmes aux Limites Extérieurs et Résolution par Équations Intégrales", Thèse de Doctorat d'Etat, Université Pierre et Marie Curie, Paris, 1987.

[8]

V. Girault, The gradient, divergence, curl and Stokes operators in weighted Sobolev spaces of $R^3$, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 39 (1992), 279-307.

[9]

B. Hanouzet, Espaces de Sobolev avec poids application au problème de Dirichlet dans un demi espace, Rend. Sem. Mat. Univ. Padova, 46 (1971), 227-272.

[10]

J. G. Heywood, Classical solutions of the Navier-Stokes equations, In "Approximation Methods for Navier-Stokes Problems" (Proc. Sympos., Univ. Paderborn, Paderborn, 1979), Lecture Notes in Math., 771, Springer, Berlin-New York, (1980), 235-248.

[11]

V. A. Kondrat'ev, Boundary value problems for elliptic equations in domains with conical or angular points, Trudy Moskov. Mat. Obšč., 16 (1967), 209-292.

[12]

A. Kufner, "Weighted Sobolev Spaces," A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1985.

[13]

V. G. Maz'ja and B. A. Plamenevskiĭ, Weighted spaces with inhomogeneous norms, and boundary value problems in domains with conical points, In "Elliptische Differentialgleichungen" (Meeting, Rostock, 1977), 161-190, Wilhelm-Pieck-Univ., Rostock, 1978.

show all references

References:
[1]

C. Amrouche, V. Girault and J. Giroire, Weighted Sobolev spaces for Laplace's equation in $R^n$, J. Math. Pures Appl. (9), 73 (1994), 579-606.

[2]

T. Z. Boulmezaoud and M. Medjden, Vorticity-vector potential formulations of the Stokes equations in the half-space, Mathematical Methods in the Applied Sciences, 28 (2005), 903-915. doi: 10.1002/mma.596.

[3]

T. Z. Boulmezaoud, Espaces de Sobolev avec poids pour l'équation de Laplace dans le demi-espace, Comptes Rendus de l'Académie des Sciences Série I Mathématiques, 328 (1999), 221-226.

[4]

T. Z. Boulmezaoud, On the Laplace operator and on the vector potential problems in the half-space: An approach using weighted spaces, Mathematical Methods in the Applied Sciences, 26 (2003), 633-669. doi: 10.1002/mma.369.

[5]

T. Z. Boulmezaoud and U. Razafison, On the steady Oseen problem in the whole space, Hiroshima Mathematical Journal, 35 (2005), 371-401.

[6]

R. Farwig and H. Sohr, An approach to resolvent estimates for the Stokes equations in $L^q$-spaces, In "The Navier-Stokes Equations II-Theory and Numerical Methods" (Oberwolfach, 1991), Lecture Notes in Math., 1530, Springer, Berlin, (1992), 97-110.

[7]

J. Giroire, "Etude de Quelques Problèmes aux Limites Extérieurs et Résolution par Équations Intégrales", Thèse de Doctorat d'Etat, Université Pierre et Marie Curie, Paris, 1987.

[8]

V. Girault, The gradient, divergence, curl and Stokes operators in weighted Sobolev spaces of $R^3$, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 39 (1992), 279-307.

[9]

B. Hanouzet, Espaces de Sobolev avec poids application au problème de Dirichlet dans un demi espace, Rend. Sem. Mat. Univ. Padova, 46 (1971), 227-272.

[10]

J. G. Heywood, Classical solutions of the Navier-Stokes equations, In "Approximation Methods for Navier-Stokes Problems" (Proc. Sympos., Univ. Paderborn, Paderborn, 1979), Lecture Notes in Math., 771, Springer, Berlin-New York, (1980), 235-248.

[11]

V. A. Kondrat'ev, Boundary value problems for elliptic equations in domains with conical or angular points, Trudy Moskov. Mat. Obšč., 16 (1967), 209-292.

[12]

A. Kufner, "Weighted Sobolev Spaces," A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1985.

[13]

V. G. Maz'ja and B. A. Plamenevskiĭ, Weighted spaces with inhomogeneous norms, and boundary value problems in domains with conical points, In "Elliptische Differentialgleichungen" (Meeting, Rostock, 1977), 161-190, Wilhelm-Pieck-Univ., Rostock, 1978.

[1]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure and Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[2]

T. V. Anoop, Nirjan Biswas, Ujjal Das. Admissible function spaces for weighted Sobolev inequalities. Communications on Pure and Applied Analysis, 2021, 20 (9) : 3259-3297. doi: 10.3934/cpaa.2021105

[3]

Doyoon Kim, Kyeong-Hun Kim, Kijung Lee. Parabolic Systems with measurable coefficients in weighted Sobolev spaces. Communications on Pure and Applied Analysis, 2022, 21 (8) : 2587-2613. doi: 10.3934/cpaa.2022062

[4]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete and Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

[5]

Doyoon Kim, Hongjie Dong, Hong Zhang. Neumann problem for non-divergence elliptic and parabolic equations with BMO$_x$ coefficients in weighted Sobolev spaces. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 4895-4914. doi: 10.3934/dcds.2016011

[6]

Jun Yang, Yaotian Shen. Weighted Sobolev-Hardy spaces and sign-changing solutions of degenerate elliptic equation. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2565-2575. doi: 10.3934/cpaa.2013.12.2565

[7]

Chérif Amrouche, Mohamed Meslameni, Šárka Nečasová. Linearized Navier-Stokes equations in $\mathbb{R}^3$: An approach in weighted Sobolev spaces. Discrete and Continuous Dynamical Systems - S, 2014, 7 (5) : 901-916. doi: 10.3934/dcdss.2014.7.901

[8]

G. Fonseca, G. Rodríguez-Blanco, W. Sandoval. Well-posedness and ill-posedness results for the regularized Benjamin-Ono equation in weighted Sobolev spaces. Communications on Pure and Applied Analysis, 2015, 14 (4) : 1327-1341. doi: 10.3934/cpaa.2015.14.1327

[9]

Baoyan Sun, Kung-Chien Wu. Global well-posedness and exponential stability for the fermion equation in weighted Sobolev spaces. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2537-2562. doi: 10.3934/dcdsb.2021147

[10]

Beom-Seok Han, Kyeong-Hun Kim, Daehan Park. A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $ C^{1} $ domains. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3415-3445. doi: 10.3934/dcds.2021002

[11]

Daniel Coutand, Steve Shkoller. Turbulent channel flow in weighted Sobolev spaces using the anisotropic Lagrangian averaged Navier-Stokes (LANS-$\alpha$) equations. Communications on Pure and Applied Analysis, 2004, 3 (1) : 1-23. doi: 10.3934/cpaa.2004.3.1

[12]

Haim Brezis, Petru Mironescu. Composition in fractional Sobolev spaces. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 241-246. doi: 10.3934/dcds.2001.7.241

[13]

Esa V. Vesalainen. Rellich type theorems for unbounded domains. Inverse Problems and Imaging, 2014, 8 (3) : 865-883. doi: 10.3934/ipi.2014.8.865

[14]

Paulo Cesar Carrião, Olimpio Hiroshi Miyagaki. On a class of variational systems in unbounded domains. Conference Publications, 2001, 2001 (Special) : 74-79. doi: 10.3934/proc.2001.2001.74

[15]

Sergiĭ Kolyada. A survey of some aspects of dynamical topology: Dynamical compactness and Slovak spaces. Discrete and Continuous Dynamical Systems - S, 2020, 13 (4) : 1291-1317. doi: 10.3934/dcdss.2020074

[16]

Valerii Los, Vladimir Mikhailets, Aleksandr Murach. Parabolic problems in generalized Sobolev spaces. Communications on Pure and Applied Analysis, 2021, 20 (10) : 3605-3636. doi: 10.3934/cpaa.2021123

[17]

Bixiang Wang, Xiaoling Gao. Random attractors for wave equations on unbounded domains. Conference Publications, 2009, 2009 (Special) : 800-809. doi: 10.3934/proc.2009.2009.800

[18]

Martino Prizzi. A remark on reaction-diffusion equations in unbounded domains. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 281-286. doi: 10.3934/dcds.2003.9.281

[19]

Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268

[20]

Indranil Chowdhury, Gyula Csató, Prosenjit Roy, Firoj Sk. Study of fractional Poincaré inequalities on unbounded domains. Discrete and Continuous Dynamical Systems, 2021, 41 (6) : 2993-3020. doi: 10.3934/dcds.2020394

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (97)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]