June  2012, 5(3): 427-434. doi: 10.3934/dcdss.2012.5.427

Some identities on weighted Sobolev spaces

1. 

Laboratoire de Mathématiques de Versailles, Université de Versailles Saint-Quentin-en-Yvelines, 45, Avenue des Etats-Unis, 78035, Versailles Cedex, France

2. 

Université de Constantine, Départment de mathématiques, Route ain el bey, 25000, Constantine, Algeria

Received  September 2010 Revised  January 2011 Published  October 2011

In this paper we compare some families of weigthted Sobolev spaces which are commonly used for solving partial differential equations in unbounded domains. The first result is an identity between two particular spaces. The second result is another identity which generalises partially the first one.
Citation: Tahar Z. Boulmezaoud, Amel Kourta. Some identities on weighted Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 427-434. doi: 10.3934/dcdss.2012.5.427
References:
[1]

C. Amrouche, V. Girault and J. Giroire, Weighted Sobolev spaces for Laplace's equation in $R^n$,, J. Math. Pures Appl. (9), 73 (1994), 579.

[2]

T. Z. Boulmezaoud and M. Medjden, Vorticity-vector potential formulations of the Stokes equations in the half-space,, Mathematical Methods in the Applied Sciences, 28 (2005), 903. doi: 10.1002/mma.596.

[3]

T. Z. Boulmezaoud, Espaces de Sobolev avec poids pour l'équation de Laplace dans le demi-espace,, Comptes Rendus de l'Académie des Sciences Série I Mathématiques, 328 (1999), 221.

[4]

T. Z. Boulmezaoud, On the Laplace operator and on the vector potential problems in the half-space: An approach using weighted spaces,, Mathematical Methods in the Applied Sciences, 26 (2003), 633. doi: 10.1002/mma.369.

[5]

T. Z. Boulmezaoud and U. Razafison, On the steady Oseen problem in the whole space,, Hiroshima Mathematical Journal, 35 (2005), 371.

[6]

R. Farwig and H. Sohr, An approach to resolvent estimates for the Stokes equations in $L^q$-spaces,, In, 1530 (1992), 97.

[7]

J. Giroire, "Etude de Quelques Problèmes aux Limites Extérieurs et Résolution par Équations Intégrales",, Thèse de Doctorat d'Etat, (1987).

[8]

V. Girault, The gradient, divergence, curl and Stokes operators in weighted Sobolev spaces of $R^3$,, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 39 (1992), 279.

[9]

B. Hanouzet, Espaces de Sobolev avec poids application au problème de Dirichlet dans un demi espace,, Rend. Sem. Mat. Univ. Padova, 46 (1971), 227.

[10]

J. G. Heywood, Classical solutions of the Navier-Stokes equations,, In, 771 (1980), 235.

[11]

V. A. Kondrat'ev, Boundary value problems for elliptic equations in domains with conical or angular points,, Trudy Moskov. Mat. Obšč., 16 (1967), 209.

[12]

A. Kufner, "Weighted Sobolev Spaces,", A Wiley-Interscience Publication, (1985).

[13]

V. G. Maz'ja and B. A. Plamenevskiĭ, Weighted spaces with inhomogeneous norms, and boundary value problems in domains with conical points,, In, (1977), 161.

show all references

References:
[1]

C. Amrouche, V. Girault and J. Giroire, Weighted Sobolev spaces for Laplace's equation in $R^n$,, J. Math. Pures Appl. (9), 73 (1994), 579.

[2]

T. Z. Boulmezaoud and M. Medjden, Vorticity-vector potential formulations of the Stokes equations in the half-space,, Mathematical Methods in the Applied Sciences, 28 (2005), 903. doi: 10.1002/mma.596.

[3]

T. Z. Boulmezaoud, Espaces de Sobolev avec poids pour l'équation de Laplace dans le demi-espace,, Comptes Rendus de l'Académie des Sciences Série I Mathématiques, 328 (1999), 221.

[4]

T. Z. Boulmezaoud, On the Laplace operator and on the vector potential problems in the half-space: An approach using weighted spaces,, Mathematical Methods in the Applied Sciences, 26 (2003), 633. doi: 10.1002/mma.369.

[5]

T. Z. Boulmezaoud and U. Razafison, On the steady Oseen problem in the whole space,, Hiroshima Mathematical Journal, 35 (2005), 371.

[6]

R. Farwig and H. Sohr, An approach to resolvent estimates for the Stokes equations in $L^q$-spaces,, In, 1530 (1992), 97.

[7]

J. Giroire, "Etude de Quelques Problèmes aux Limites Extérieurs et Résolution par Équations Intégrales",, Thèse de Doctorat d'Etat, (1987).

[8]

V. Girault, The gradient, divergence, curl and Stokes operators in weighted Sobolev spaces of $R^3$,, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 39 (1992), 279.

[9]

B. Hanouzet, Espaces de Sobolev avec poids application au problème de Dirichlet dans un demi espace,, Rend. Sem. Mat. Univ. Padova, 46 (1971), 227.

[10]

J. G. Heywood, Classical solutions of the Navier-Stokes equations,, In, 771 (1980), 235.

[11]

V. A. Kondrat'ev, Boundary value problems for elliptic equations in domains with conical or angular points,, Trudy Moskov. Mat. Obšč., 16 (1967), 209.

[12]

A. Kufner, "Weighted Sobolev Spaces,", A Wiley-Interscience Publication, (1985).

[13]

V. G. Maz'ja and B. A. Plamenevskiĭ, Weighted spaces with inhomogeneous norms, and boundary value problems in domains with conical points,, In, (1977), 161.

[1]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

[2]

Doyoon Kim, Hongjie Dong, Hong Zhang. Neumann problem for non-divergence elliptic and parabolic equations with BMO$_x$ coefficients in weighted Sobolev spaces. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4895-4914. doi: 10.3934/dcds.2016011

[3]

Jun Yang, Yaotian Shen. Weighted Sobolev-Hardy spaces and sign-changing solutions of degenerate elliptic equation. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2565-2575. doi: 10.3934/cpaa.2013.12.2565

[4]

Chérif Amrouche, Mohamed Meslameni, Šárka Nečasová. Linearized Navier-Stokes equations in $\mathbb{R}^3$: An approach in weighted Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 901-916. doi: 10.3934/dcdss.2014.7.901

[5]

G. Fonseca, G. Rodríguez-Blanco, W. Sandoval. Well-posedness and ill-posedness results for the regularized Benjamin-Ono equation in weighted Sobolev spaces. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1327-1341. doi: 10.3934/cpaa.2015.14.1327

[6]

Daniel Coutand, Steve Shkoller. Turbulent channel flow in weighted Sobolev spaces using the anisotropic Lagrangian averaged Navier-Stokes (LANS-$\alpha$) equations. Communications on Pure & Applied Analysis, 2004, 3 (1) : 1-23. doi: 10.3934/cpaa.2004.3.1

[7]

Haim Brezis, Petru Mironescu. Composition in fractional Sobolev spaces. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 241-246. doi: 10.3934/dcds.2001.7.241

[8]

Esa V. Vesalainen. Rellich type theorems for unbounded domains. Inverse Problems & Imaging, 2014, 8 (3) : 865-883. doi: 10.3934/ipi.2014.8.865

[9]

Paulo Cesar Carrião, Olimpio Hiroshi Miyagaki. On a class of variational systems in unbounded domains. Conference Publications, 2001, 2001 (Special) : 74-79. doi: 10.3934/proc.2001.2001.74

[10]

Sergiĭ Kolyada. A survey of some aspects of dynamical topology: Dynamical compactness and Slovak spaces. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-27. doi: 10.3934/dcdss.2020074

[11]

Raffaela Capitanelli, Maria Agostina Vivaldi. Uniform weighted estimates on pre-fractal domains. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1969-1985. doi: 10.3934/dcdsb.2014.19.1969

[12]

Bixiang Wang, Xiaoling Gao. Random attractors for wave equations on unbounded domains. Conference Publications, 2009, 2009 (Special) : 800-809. doi: 10.3934/proc.2009.2009.800

[13]

Martino Prizzi. A remark on reaction-diffusion equations in unbounded domains. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 281-286. doi: 10.3934/dcds.2003.9.281

[14]

Marita Thomas. Uniform Poincaré-Sobolev and isoperimetric inequalities for classes of domains. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2741-2761. doi: 10.3934/dcds.2015.35.2741

[15]

Linda Beukemann, Klaus Metsch, Leo Storme. On weighted minihypers in finite projective spaces of square order. Advances in Mathematics of Communications, 2015, 9 (3) : 291-309. doi: 10.3934/amc.2015.9.291

[16]

Xiaoying Han. Exponential attractors for lattice dynamical systems in weighted spaces. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 445-467. doi: 10.3934/dcds.2011.31.445

[17]

Jiabao Su, Rushun Tian. Weighted Sobolev embeddings and radial solutions of inhomogeneous quasilinear elliptic equations. Communications on Pure & Applied Analysis, 2010, 9 (4) : 885-904. doi: 10.3934/cpaa.2010.9.885

[18]

Wenxiong Chen, Chao Jin, Congming Li, Jisun Lim. Weighted Hardy-Littlewood-Sobolev inequalities and systems of integral equations. Conference Publications, 2005, 2005 (Special) : 164-172. doi: 10.3934/proc.2005.2005.164

[19]

Ping Li, Pablo Raúl Stinga, José L. Torrea. On weighted mixed-norm Sobolev estimates for some basic parabolic equations. Communications on Pure & Applied Analysis, 2017, 16 (3) : 855-882. doi: 10.3934/cpaa.2017041

[20]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]