\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

An existence theorem for the magneto-viscoelastic problem

Abstract Related Papers Cited by
  • The dynamics of magneto-viscoelastic materials is described by a nonlinear system which couples the equation of the magnetization, given in Gibert form, and the viscoelastic integro-differential equation for the displacements. We study the general three-dimensional case and establish a theorem for the existence of weak solutions. The existence is proved by compactness of the approximated penalty problem.
    Mathematics Subject Classification: Primary: 74H20, 35Q74; Secondary: 45K05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    W. F. Brown, "Magnetoelastic Interactions," Springer Tracts in Natural Philosophy, 9, Springer-Verlag, 1966.

    [2]

    S. Carillo, V. Valente and G. Vergara, Caffarelli, Existence and uniqueness in magneto-viscoelasticity, Applicable Analysis, 2010, in press.

    [3]

    M. Chipot and G. Vergara-Caffarelli, Viscoelasticity without initial conditions, in "Volterra Integrodifferential Equations in Banach Spaces and Applications" (eds. G. Da Prato and M. Iannelli), Pitman Res. Notes Math. Ser., 190, Longman Sci. Tech., Harlow, (1989), 52-66.

    [4]

    M. Chipot and G. Vergara Caffarelli, Some results in viscoelasticity theory via a simple perturbation argument, Rend. Sem. Mat. Univ. Padova, 84 (1990), 223-239.

    [5]

    M. Chipot, I. Shafrir, V. Valente and G. Vergara-Caffarelli, A nonlocal problem arising in the study of magneto-elastic interactions, Boll. UMI (9), 1 (2008), 197-221.

    [6]

    M. Chipot, I. Shafrir, V. Valente and G. Vergara-Caffarelli, On a hyperbolic-parabolic system arising in magnetoelasticity, J. Math. Anal. Appl., 352 (2009), 120-131.doi: 10.1016/j.jmaa.2008.04.013.

    [7]

    C. M. Dafermos, An abstract Volterra equation with applications to linear viscoelasticity, J. Diff. Equations, 7 (1970), 554-569.doi: 10.1016/0022-0396(70)90101-4.

    [8]

    C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rat. Mech. Anal., 37 (1970), 297-308.doi: 10.1007/BF00251609.

    [9]

    T. L. Gilbert, A Lagrangian formulation of the gyromagnetic equation of the magnetization field, Phys. Rev., 100 (1955), 1243.

    [10]

    S. He, "Modélisation et Simulation Numérique de Matériaux Magnétostrictifs," Ph.D thesis, Université Pierre et Marie Currie, 1999.

    [11]

    D. Kinderlehrer, Magnetoelastic interactions, in "Variational Methods for Discontinuous Structures" (Como, 1994), Prog. Nonlinear Differential Equations Appl., 25, Birkhäuser, Basel, (1996), 177-189.

    [12]

    L. Landau and E. Lifshitz, On the theory of the dispersion of magnetic permeability in ferromagnetic bodies, Phys. Z. Sowjet., 8 (1935), 153.

    [13]

    D. Sforza and G. Vergara-Caffarelli, A Volterra integro-differential equation "without initial conditions," Adv. Math. Sci. Appl., 11 (2001), 153-160.

    [14]

    V. Valente and G. Vergara-Caffarelli, On the dynamics of magneto-elastic interactions: Existence of solutions and limit behaviors, Asymptotic Analysis, 51 (2007), 319-333.

    [15]

    G. Vergara-Caffarelli, Dissipatività e unicità per il problema dinamico unidimensionale della viscoelasticità lineare, Atti Accad. Naz. Lincei, 82 (1988), 483-488.

    [16]

    G. Vergara-Caffarelli, Dissipatività ed esistenza per il problema dinamico unidimensionale della viscoelasticità lineare, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 82 (1988), 489-496.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(146) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return