-
Previous Article
Asymptotic behavior of the Caginalp phase-field system with coupled dynamic boundary conditions
- DCDS-S Home
- This Issue
-
Next Article
Multi-scale multi-profile global solutions of parabolic equations in $\mathbb{R}^N $
Korn's inequalities: The linear vs. the nonlinear case
1. | City University of Hong Kong, Department of Mathematics, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, China |
References:
[1] |
S. S. Antman, Ordinary differential equations of non-linear elasticity. I. Foundations of the theories of nonlinearly elastic rods and shells,, Arch. Rational Mech. Anal., 61 (1976), 307.
doi: 10.1007/BF00250722. |
[2] |
J. M. Ball, Convexity conditions and existence theorems in nonlinear elasticity,, Arch. Rational Mech. Anal., 63 (): 337.
doi: 10.1007/BF00279992. |
[3] |
P. G. Ciarlet, "Mathematical Elasticity. Volume I. Three-Dimensional Elasticity,'', Studies in Mathematics and its Applications, 20 (1988).
|
[4] |
P. G. Ciarlet, "An Introduction to Differential Geometry with Applications to Elasticity,'', Reprinted from J. Elasticity, 78/79 (2005).
|
[5] |
P. G. Ciarlet and P. Ciarlet, Jr., Another approach to linearized elasticity and a new proof of Korn's inequality,, Math. Models Methods Appl. Sci., 15 (2005), 259.
doi: 10.1142/S0218202505000352. |
[6] |
P. G. Ciarlet and F. Laurent, Continuity of a deformation as a function of its Cauchy-Green tensor,, Arch. Ration. Mech. Anal., 167 (2003), 255.
doi: 10.1007/s00205-003-0246-9. |
[7] |
P. G. Ciarlet and C. Mardare, On rigid and infinitesimal rigid displacements in three-dimensional elasticity,, Math. Models Methods Appl. Sci., 13 (2003), 1589.
doi: 10.1142/S0218202503003045. |
[8] |
P. G. Ciarlet and C. Mardare, Recovery of a manifold with boundary and its continuity as a function of its metric tensor,, J. Math. Pures Appl. (9), 83 (2004), 811.
doi: 10.1016/j.matpur.2004.01.004. |
[9] |
P. G. Ciarlet and C. Mardare, Continuity of a deformation in $H^1$ as a function of its Cauchy-Green tensor in $L^1$,, J. Nonlinear Sci., 14 (2004), 415.
doi: 10.1007/s00332-004-0624-y. |
[10] |
P. G. Ciarlet and C. Mardare, Existence theorems in intrinsic nonlinear elasticity,, J. Math. Pures Appl., 94 (2010), 229.
doi: 10.1016/j.matpur.2010.02.002. |
[11] |
P. G. Ciarlet and C. Mardare, Remarks on Korn's inequalities in $W^{1,p} (\Omega)$,, in preparation., (). Google Scholar |
[12] |
P. G. Ciarlet, C. Mardare and M. Shen, Saint Venant compatibility equations in curvilinear coordinates,, Analysis and Applications (Singap.), 5 (2007), 231.
doi: 10.1142/S0219530507000973. |
[13] |
S. Conti, "Low-energy Deformations of Thin Elastic Plates: Isometric Embeddings and Branching Patterns,'', Habilitationsschrift, (2004). Google Scholar |
[14] |
G. Duvaut and J.-L. Lions, "Les Inéquations en Mécanique et en Physique,'', Travaux et Recherches Mathématiques, (1972).
|
[15] |
K. O. Friedrichs, On the boundary-value problems of the theory of elasticity and Korn's inequality,, Ann. of Math. (2), 48 (1947), 441.
doi: 10.2307/1969180. |
[16] |
G. Friesecke, R. D. James and S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity,, Comm. Pure Appl. Math., 55 (2002), 1461.
doi: 10.1002/cpa.10048. |
[17] |
G. Geymonat and P. Suquet, Functional spaces for Norton-Hoff materials,, Math. Models Methods Appl. Sci., 8 (1986), 206.
|
[18] |
J. Gobert, Une inégalité fondamentale de la théorie de l'élasticité,, Bull. Soc. Roy. Sci. Liège, 31 (1962), 182.
|
[19] |
C. O. Horgan, Korn's inequalities and their applications in continuum mechanics,, SIAM Review, 37 (1995), 491.
doi: 10.1137/1037123. |
[20] |
F. John, Rotation and strain,, Comm. Pure Appl. Math., 14 (1961), 391.
doi: 10.1002/cpa.3160140316. |
[21] |
F. John, Bounds for deformations in terms of average strains,, in, (1972), 129.
|
[22] |
R. V. Kohn, New integral estimates for deformations in terms of their nonlinear strains,, Arch. Rational Mech. Anal., 78 (1982), 131.
doi: 10.1007/BF00250837. |
[23] |
A. Korn, Die Eigenschwingungen eines elastischen Körpers mit ruhender Oberfläche,, Sitzungsberichte der Mathematisch-physikalischen Klasse der Königlich bayerischen Akademie der Wissenschaften zu München, 36 (1906), 351. Google Scholar |
[24] |
C. Mardare, On the recovery of a manifold with prescribed metric tensor,, Analysis and Applications (Singap.), 1 (2003), 433.
doi: 10.1142/S0219530503000235. |
[25] |
S. Mardare, Inequality of Korn's type on compact surfaces without boundary,, Chinese Annals Math. Ser. B, 24 (2003), 191.
doi: 10.1142/S0252959903000177. |
[26] |
S. Mardare, On isometric immersions of a Riemannian space with little regularity,, Analysis and Applications (Singap.), 2 (2004), 193.
doi: 10.1142/S0219530504000357. |
[27] |
S. Mardare, On Pfaff systems with $L^p$ coefficients and their applications in differential geometry,, J. Math. Pures Appl. (9), 84 (2005), 1659.
doi: 10.1016/j.matpur.2005.08.002. |
[28] |
S. Mardare, On systems of first order linear partial differential equations with $L^p$ coefficients,, Advances in Differential Equations, 12 (2007), 301.
|
[29] |
Y. Reshetnyak, Mappings of domains in $\mathbbR^n$ and their metric tensors,, Siberian Math. J., 44 (2003), 332.
doi: 10.1023/A:1022945123237. |
show all references
References:
[1] |
S. S. Antman, Ordinary differential equations of non-linear elasticity. I. Foundations of the theories of nonlinearly elastic rods and shells,, Arch. Rational Mech. Anal., 61 (1976), 307.
doi: 10.1007/BF00250722. |
[2] |
J. M. Ball, Convexity conditions and existence theorems in nonlinear elasticity,, Arch. Rational Mech. Anal., 63 (): 337.
doi: 10.1007/BF00279992. |
[3] |
P. G. Ciarlet, "Mathematical Elasticity. Volume I. Three-Dimensional Elasticity,'', Studies in Mathematics and its Applications, 20 (1988).
|
[4] |
P. G. Ciarlet, "An Introduction to Differential Geometry with Applications to Elasticity,'', Reprinted from J. Elasticity, 78/79 (2005).
|
[5] |
P. G. Ciarlet and P. Ciarlet, Jr., Another approach to linearized elasticity and a new proof of Korn's inequality,, Math. Models Methods Appl. Sci., 15 (2005), 259.
doi: 10.1142/S0218202505000352. |
[6] |
P. G. Ciarlet and F. Laurent, Continuity of a deformation as a function of its Cauchy-Green tensor,, Arch. Ration. Mech. Anal., 167 (2003), 255.
doi: 10.1007/s00205-003-0246-9. |
[7] |
P. G. Ciarlet and C. Mardare, On rigid and infinitesimal rigid displacements in three-dimensional elasticity,, Math. Models Methods Appl. Sci., 13 (2003), 1589.
doi: 10.1142/S0218202503003045. |
[8] |
P. G. Ciarlet and C. Mardare, Recovery of a manifold with boundary and its continuity as a function of its metric tensor,, J. Math. Pures Appl. (9), 83 (2004), 811.
doi: 10.1016/j.matpur.2004.01.004. |
[9] |
P. G. Ciarlet and C. Mardare, Continuity of a deformation in $H^1$ as a function of its Cauchy-Green tensor in $L^1$,, J. Nonlinear Sci., 14 (2004), 415.
doi: 10.1007/s00332-004-0624-y. |
[10] |
P. G. Ciarlet and C. Mardare, Existence theorems in intrinsic nonlinear elasticity,, J. Math. Pures Appl., 94 (2010), 229.
doi: 10.1016/j.matpur.2010.02.002. |
[11] |
P. G. Ciarlet and C. Mardare, Remarks on Korn's inequalities in $W^{1,p} (\Omega)$,, in preparation., (). Google Scholar |
[12] |
P. G. Ciarlet, C. Mardare and M. Shen, Saint Venant compatibility equations in curvilinear coordinates,, Analysis and Applications (Singap.), 5 (2007), 231.
doi: 10.1142/S0219530507000973. |
[13] |
S. Conti, "Low-energy Deformations of Thin Elastic Plates: Isometric Embeddings and Branching Patterns,'', Habilitationsschrift, (2004). Google Scholar |
[14] |
G. Duvaut and J.-L. Lions, "Les Inéquations en Mécanique et en Physique,'', Travaux et Recherches Mathématiques, (1972).
|
[15] |
K. O. Friedrichs, On the boundary-value problems of the theory of elasticity and Korn's inequality,, Ann. of Math. (2), 48 (1947), 441.
doi: 10.2307/1969180. |
[16] |
G. Friesecke, R. D. James and S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity,, Comm. Pure Appl. Math., 55 (2002), 1461.
doi: 10.1002/cpa.10048. |
[17] |
G. Geymonat and P. Suquet, Functional spaces for Norton-Hoff materials,, Math. Models Methods Appl. Sci., 8 (1986), 206.
|
[18] |
J. Gobert, Une inégalité fondamentale de la théorie de l'élasticité,, Bull. Soc. Roy. Sci. Liège, 31 (1962), 182.
|
[19] |
C. O. Horgan, Korn's inequalities and their applications in continuum mechanics,, SIAM Review, 37 (1995), 491.
doi: 10.1137/1037123. |
[20] |
F. John, Rotation and strain,, Comm. Pure Appl. Math., 14 (1961), 391.
doi: 10.1002/cpa.3160140316. |
[21] |
F. John, Bounds for deformations in terms of average strains,, in, (1972), 129.
|
[22] |
R. V. Kohn, New integral estimates for deformations in terms of their nonlinear strains,, Arch. Rational Mech. Anal., 78 (1982), 131.
doi: 10.1007/BF00250837. |
[23] |
A. Korn, Die Eigenschwingungen eines elastischen Körpers mit ruhender Oberfläche,, Sitzungsberichte der Mathematisch-physikalischen Klasse der Königlich bayerischen Akademie der Wissenschaften zu München, 36 (1906), 351. Google Scholar |
[24] |
C. Mardare, On the recovery of a manifold with prescribed metric tensor,, Analysis and Applications (Singap.), 1 (2003), 433.
doi: 10.1142/S0219530503000235. |
[25] |
S. Mardare, Inequality of Korn's type on compact surfaces without boundary,, Chinese Annals Math. Ser. B, 24 (2003), 191.
doi: 10.1142/S0252959903000177. |
[26] |
S. Mardare, On isometric immersions of a Riemannian space with little regularity,, Analysis and Applications (Singap.), 2 (2004), 193.
doi: 10.1142/S0219530504000357. |
[27] |
S. Mardare, On Pfaff systems with $L^p$ coefficients and their applications in differential geometry,, J. Math. Pures Appl. (9), 84 (2005), 1659.
doi: 10.1016/j.matpur.2005.08.002. |
[28] |
S. Mardare, On systems of first order linear partial differential equations with $L^p$ coefficients,, Advances in Differential Equations, 12 (2007), 301.
|
[29] |
Y. Reshetnyak, Mappings of domains in $\mathbbR^n$ and their metric tensors,, Siberian Math. J., 44 (2003), 332.
doi: 10.1023/A:1022945123237. |
[1] |
Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173 |
[2] |
Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296 |
[3] |
Indranil Chowdhury, Gyula Csató, Prosenjit Roy, Firoj Sk. Study of fractional Poincaré inequalities on unbounded domains. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020394 |
[4] |
Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073 |
[5] |
Lisa Hernandez Lucas. Properties of sets of Subspaces with Constant Intersection Dimension. Advances in Mathematics of Communications, 2021, 15 (1) : 191-206. doi: 10.3934/amc.2020052 |
[6] |
Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020451 |
[7] |
Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054 |
[8] |
George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003 |
[9] |
João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138 |
[10] |
Sabira El Khalfaoui, Gábor P. Nagy. On the dimension of the subfield subcodes of 1-point Hermitian codes. Advances in Mathematics of Communications, 2021, 15 (2) : 219-226. doi: 10.3934/amc.2020054 |
[11] |
Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020458 |
[12] |
Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024 |
[13] |
Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310 |
[14] |
Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051 |
[15] |
Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251 |
[16] |
Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020460 |
[17] |
Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020283 |
[18] |
Fang Li, Bo You. On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021024 |
[19] |
Norman Noguera, Ademir Pastor. Scattering of radial solutions for quadratic-type Schrödinger systems in dimension five. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021018 |
[20] |
Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]