June  2012, 5(3): 485-505. doi: 10.3934/dcdss.2012.5.485

Asymptotic behavior of the Caginalp phase-field system with coupled dynamic boundary conditions

1. 

Politecnico di Milano - Dipartimento di Matematica "F. Brioschi", Via Bonardi 9, 20133 Milano

2. 

Dipartimento di Matematica, Università di Modena e Reggio Emilia, Via Campi 213/B, I-41125 Modena, Italy

3. 

Université de Poitiers, Laboratoire de Mathématiques et Applications, UMR CNRS 6086 - SP2MI, Boulevard Marie et Pierre Curie - Téléport 2, F-86962 Chasseneuil Futuroscope Cedex

Received  May 2011 Revised  July 2011 Published  October 2011

This paper deals with the longtime behavior of the Caginalp phase-field system with coupled dynamic boundary conditions on both state variables. We prove that the system generates a dissipative semigroup in a suitable phase-space and possesses the finite-dimensional smooth global attractor and an exponential attractor.
Citation: Monica Conti, Stefania Gatti, Alain Miranville. Asymptotic behavior of the Caginalp phase-field system with coupled dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 485-505. doi: 10.3934/dcdss.2012.5.485
References:
[1]

G. Caginalp, An analysis of a phase field model of a free boundary, Arch. Rational Mech. Anal., 92 (1986), 205-245. doi: 10.1007/BF00254827.  Google Scholar

[2]

P. Fabrie, C. Galusinski, A. Miranville and S. Zelik, Uniform exponential attractors for a singularly perturbed damped wave equation. Partial differential equations and applications, Discrete Contin. Dynam. Systems, 10 (2004), 211-238. doi: 10.3934/dcds.2004.10.211.  Google Scholar

[3]

H. P. Fischer, P. Maass and W. Dieterich, Novel surface modes in spinodal decomposition, Phys. Rev. Letters, 79 (1997), 893-896. doi: 10.1103/PhysRevLett.79.893.  Google Scholar

[4]

H. P. Fischer, P. Maass and W. Dieterich, Diverging time and length scales of spinodal decomposition modes in thin flows, Europhys. Lett., 42 (1998), 49-54. doi: 10.1209/epl/i1998-00550-y.  Google Scholar

[5]

H. P. Fischer, J. Reinhard, W. Dieterich, J.-F. Gouyet, P. Maass, A. Majhofer and D. Reinel, Time-dependent density functional theory and the kinetics of lattice gas systems in contact with a wall, J. Chem. Phys., 108 (1998), 3028-3037. doi: 10.1063/1.475690.  Google Scholar

[6]

C. G. Gal, M. Grasselli and A. Miranville, Robust exponential attractors for singularly perturbed phase-field equations with dynamic boundary conditions, NoDEA Nonlinear Differential Equations Appl., 15 (2008), 535–-556. doi: 10.1007/s00030-008-7029-9.  Google Scholar

[7]

C. G. Gal, M. Grasselli and A. Miranville, Nonisothermal Allen-Cahn equations with coupled dynamic boundary conditions, in "Nonlinear Phenomena with Energy Dissipation," GAKUTO Internat. Ser. Math. Sci. Appl., 29, Gakkotōsho, Tokyo, 2008, 117–-139.  Google Scholar

[8]

S. Gatti and A. Miranville, Asymptotic behavior of a phase-field system with dynamic boundary conditions, in "Differential Equations: Inverse and Direct Problems," Lecture Notes in Pure and Applied Mathematics, 251, Chapman & Hall/CRC, Boca Raton, FL, (2006), 149-170.  Google Scholar

[9]

M. Grasselli, A. Miranville and G. Schimperna, The Caginalp phase-field system with coupled dynamic boundary conditions and singular potentials, Discrete Contin. Dynam. Systems, 28 (2010), 67-98. doi: 10.3934/dcds.2010.28.67.  Google Scholar

[10]

O. A. Ladyžhenskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type," Translations of Mathematical Monographs, Vol. 23, AMS, Providence, RI, 1967.  Google Scholar

[11]

A. Miranville and S. Zelik, Robust exponential attractors for singularly perturbed phase-field type equations,, Electron. J. Differential Equations, 2002 ().   Google Scholar

[12]

A. Miranville and S. Zelik, Exponential attractors for the Cahn-Hilliard equation with dynamic boundary conditions, Math. Meth. Appl. Sci., 28 (2005), 709-735. doi: 10.1002/mma.590.  Google Scholar

[13]

A. Miranville and S. Zelik, The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions, Discrete Contin. Dynam. Systems, 28 (2010), 275-310. doi: 10.3934/dcds.2010.28.275.  Google Scholar

[14]

R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics," 2nd edition, Applied Mathematical Sciences, 68, Springer-Verlag, New York, 1997.  Google Scholar

[15]

E. Zeidler, "Nonlinear Functional Analysis and its Applications. Part I. Fixed-Point Theorems," Springer-Verlag, New York, 1986.  Google Scholar

show all references

References:
[1]

G. Caginalp, An analysis of a phase field model of a free boundary, Arch. Rational Mech. Anal., 92 (1986), 205-245. doi: 10.1007/BF00254827.  Google Scholar

[2]

P. Fabrie, C. Galusinski, A. Miranville and S. Zelik, Uniform exponential attractors for a singularly perturbed damped wave equation. Partial differential equations and applications, Discrete Contin. Dynam. Systems, 10 (2004), 211-238. doi: 10.3934/dcds.2004.10.211.  Google Scholar

[3]

H. P. Fischer, P. Maass and W. Dieterich, Novel surface modes in spinodal decomposition, Phys. Rev. Letters, 79 (1997), 893-896. doi: 10.1103/PhysRevLett.79.893.  Google Scholar

[4]

H. P. Fischer, P. Maass and W. Dieterich, Diverging time and length scales of spinodal decomposition modes in thin flows, Europhys. Lett., 42 (1998), 49-54. doi: 10.1209/epl/i1998-00550-y.  Google Scholar

[5]

H. P. Fischer, J. Reinhard, W. Dieterich, J.-F. Gouyet, P. Maass, A. Majhofer and D. Reinel, Time-dependent density functional theory and the kinetics of lattice gas systems in contact with a wall, J. Chem. Phys., 108 (1998), 3028-3037. doi: 10.1063/1.475690.  Google Scholar

[6]

C. G. Gal, M. Grasselli and A. Miranville, Robust exponential attractors for singularly perturbed phase-field equations with dynamic boundary conditions, NoDEA Nonlinear Differential Equations Appl., 15 (2008), 535–-556. doi: 10.1007/s00030-008-7029-9.  Google Scholar

[7]

C. G. Gal, M. Grasselli and A. Miranville, Nonisothermal Allen-Cahn equations with coupled dynamic boundary conditions, in "Nonlinear Phenomena with Energy Dissipation," GAKUTO Internat. Ser. Math. Sci. Appl., 29, Gakkotōsho, Tokyo, 2008, 117–-139.  Google Scholar

[8]

S. Gatti and A. Miranville, Asymptotic behavior of a phase-field system with dynamic boundary conditions, in "Differential Equations: Inverse and Direct Problems," Lecture Notes in Pure and Applied Mathematics, 251, Chapman & Hall/CRC, Boca Raton, FL, (2006), 149-170.  Google Scholar

[9]

M. Grasselli, A. Miranville and G. Schimperna, The Caginalp phase-field system with coupled dynamic boundary conditions and singular potentials, Discrete Contin. Dynam. Systems, 28 (2010), 67-98. doi: 10.3934/dcds.2010.28.67.  Google Scholar

[10]

O. A. Ladyžhenskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type," Translations of Mathematical Monographs, Vol. 23, AMS, Providence, RI, 1967.  Google Scholar

[11]

A. Miranville and S. Zelik, Robust exponential attractors for singularly perturbed phase-field type equations,, Electron. J. Differential Equations, 2002 ().   Google Scholar

[12]

A. Miranville and S. Zelik, Exponential attractors for the Cahn-Hilliard equation with dynamic boundary conditions, Math. Meth. Appl. Sci., 28 (2005), 709-735. doi: 10.1002/mma.590.  Google Scholar

[13]

A. Miranville and S. Zelik, The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions, Discrete Contin. Dynam. Systems, 28 (2010), 275-310. doi: 10.3934/dcds.2010.28.275.  Google Scholar

[14]

R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics," 2nd edition, Applied Mathematical Sciences, 68, Springer-Verlag, New York, 1997.  Google Scholar

[15]

E. Zeidler, "Nonlinear Functional Analysis and its Applications. Part I. Fixed-Point Theorems," Springer-Verlag, New York, 1986.  Google Scholar

[1]

Fang Li, Bo You. On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021024

[2]

Ciprian G. Gal, M. Grasselli. On the asymptotic behavior of the Caginalp system with dynamic boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 689-710. doi: 10.3934/cpaa.2009.8.689

[3]

Maurizio Grasselli, Alain Miranville, Giulio Schimperna. The Caginalp phase-field system with coupled dynamic boundary conditions and singular potentials. Discrete & Continuous Dynamical Systems, 2010, 28 (1) : 67-98. doi: 10.3934/dcds.2010.28.67

[4]

Laurence Cherfils, Stefania Gatti, Alain Miranville. Long time behavior of the Caginalp system with singular potentials and dynamic boundary conditions. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2261-2290. doi: 10.3934/cpaa.2012.11.2261

[5]

Franck Davhys Reval Langa, Morgan Pierre. A doubly splitting scheme for the Caginalp system with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 653-676. doi: 10.3934/dcdss.2020353

[6]

Nobuyuki Kenmochi, Noriaki Yamazaki. Global attractor of the multivalued semigroup associated with a phase-field model of grain boundary motion with constraint. Conference Publications, 2011, 2011 (Special) : 824-833. doi: 10.3934/proc.2011.2011.824

[7]

Elisabetta Rocca, Giulio Schimperna. Global attractor for a parabolic-hyperbolic Penrose-Fife phase field system. Discrete & Continuous Dynamical Systems, 2006, 15 (4) : 1193-1214. doi: 10.3934/dcds.2006.15.1193

[8]

Rodrigo Samprogna, Tomás Caraballo. Pullback attractor for a dynamic boundary non-autonomous problem with Infinite Delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 509-523. doi: 10.3934/dcdsb.2017195

[9]

Rogério Martins. One-dimensional attractor for a dissipative system with a cylindrical phase space. Discrete & Continuous Dynamical Systems, 2006, 14 (3) : 533-547. doi: 10.3934/dcds.2006.14.533

[10]

Narcisse Batangouna, Morgan Pierre. Convergence of exponential attractors for a time splitting approximation of the Caginalp phase-field system. Communications on Pure & Applied Analysis, 2018, 17 (1) : 1-19. doi: 10.3934/cpaa.2018001

[11]

Marilena N. Poulou, Nikolaos M. Stavrakakis. Global attractor for a Klein-Gordon-Schrodinger type system. Conference Publications, 2007, 2007 (Special) : 844-854. doi: 10.3934/proc.2007.2007.844

[12]

Francesca Bucci, Igor Chueshov, Irena Lasiecka. Global attractor for a composite system of nonlinear wave and plate equations. Communications on Pure & Applied Analysis, 2007, 6 (1) : 113-140. doi: 10.3934/cpaa.2007.6.113

[13]

Olivier Goubet, Manal Hussein. Global attractor for the Davey-Stewartson system on $\mathbb R^2$. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1555-1575. doi: 10.3934/cpaa.2009.8.1555

[14]

Dalibor Pražák. Exponential attractor for the delayed logistic equation with a nonlinear diffusion. Conference Publications, 2003, 2003 (Special) : 717-726. doi: 10.3934/proc.2003.2003.717

[15]

Messoud Efendiev, Anna Zhigun. On an exponential attractor for a class of PDEs with degenerate diffusion and chemotaxis. Discrete & Continuous Dynamical Systems, 2018, 38 (2) : 651-673. doi: 10.3934/dcds.2018028

[16]

I-Liang Chern, Chun-Hsiung Hsia. Dynamic phase transition for binary systems in cylindrical geometry. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 173-188. doi: 10.3934/dcdsb.2011.16.173

[17]

Giacomo Canevari, Pierluigi Colli. Solvability and asymptotic analysis of a generalization of the Caginalp phase field system. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1959-1982. doi: 10.3934/cpaa.2012.11.1959

[18]

Bo You. Global attractor of the Cahn-Hilliard-Navier-Stokes system with moving contact lines. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2283-2298. doi: 10.3934/cpaa.2019103

[19]

Messoud Efendiev, Etsushi Nakaguchi, Wolfgang L. Wendland. Uniform estimate of dimension of the global attractor for a semi-discretized chemotaxis-growth system. Conference Publications, 2007, 2007 (Special) : 334-343. doi: 10.3934/proc.2007.2007.334

[20]

Eduardo Liz, Gergely Röst. On the global attractor of delay differential equations with unimodal feedback. Discrete & Continuous Dynamical Systems, 2009, 24 (4) : 1215-1224. doi: 10.3934/dcds.2009.24.1215

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (56)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]