\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Asymptotic behavior of the Caginalp phase-field system with coupled dynamic boundary conditions

Abstract Related Papers Cited by
  • This paper deals with the longtime behavior of the Caginalp phase-field system with coupled dynamic boundary conditions on both state variables. We prove that the system generates a dissipative semigroup in a suitable phase-space and possesses the finite-dimensional smooth global attractor and an exponential attractor.
    Mathematics Subject Classification: Primary: 35K55, 35J60; Secondary: 80A22.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    G. Caginalp, An analysis of a phase field model of a free boundary, Arch. Rational Mech. Anal., 92 (1986), 205-245.doi: 10.1007/BF00254827.

    [2]

    P. Fabrie, C. Galusinski, A. Miranville and S. Zelik, Uniform exponential attractors for a singularly perturbed damped wave equation. Partial differential equations and applications, Discrete Contin. Dynam. Systems, 10 (2004), 211-238.doi: 10.3934/dcds.2004.10.211.

    [3]

    H. P. Fischer, P. Maass and W. Dieterich, Novel surface modes in spinodal decomposition, Phys. Rev. Letters, 79 (1997), 893-896.doi: 10.1103/PhysRevLett.79.893.

    [4]

    H. P. Fischer, P. Maass and W. Dieterich, Diverging time and length scales of spinodal decomposition modes in thin flows, Europhys. Lett., 42 (1998), 49-54.doi: 10.1209/epl/i1998-00550-y.

    [5]

    H. P. Fischer, J. Reinhard, W. Dieterich, J.-F. Gouyet, P. Maass, A. Majhofer and D. Reinel, Time-dependent density functional theory and the kinetics of lattice gas systems in contact with a wall, J. Chem. Phys., 108 (1998), 3028-3037.doi: 10.1063/1.475690.

    [6]

    C. G. Gal, M. Grasselli and A. Miranville, Robust exponential attractors for singularly perturbed phase-field equations with dynamic boundary conditions, NoDEA Nonlinear Differential Equations Appl., 15 (2008), 535–-556.doi: 10.1007/s00030-008-7029-9.

    [7]

    C. G. Gal, M. Grasselli and A. Miranville, Nonisothermal Allen-Cahn equations with coupled dynamic boundary conditions, in "Nonlinear Phenomena with Energy Dissipation," GAKUTO Internat. Ser. Math. Sci. Appl., 29, Gakkotōsho, Tokyo, 2008, 117–-139.

    [8]

    S. Gatti and A. Miranville, Asymptotic behavior of a phase-field system with dynamic boundary conditions, in "Differential Equations: Inverse and Direct Problems," Lecture Notes in Pure and Applied Mathematics, 251, Chapman & Hall/CRC, Boca Raton, FL, (2006), 149-170.

    [9]

    M. Grasselli, A. Miranville and G. Schimperna, The Caginalp phase-field system with coupled dynamic boundary conditions and singular potentials, Discrete Contin. Dynam. Systems, 28 (2010), 67-98.doi: 10.3934/dcds.2010.28.67.

    [10]

    O. A. Ladyžhenskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type," Translations of Mathematical Monographs, Vol. 23, AMS, Providence, RI, 1967.

    [11]

    A. Miranville and S. ZelikRobust exponential attractors for singularly perturbed phase-field type equations, Electron. J. Differential Equations, 2002, 28 pp.

    [12]

    A. Miranville and S. Zelik, Exponential attractors for the Cahn-Hilliard equation with dynamic boundary conditions, Math. Meth. Appl. Sci., 28 (2005), 709-735.doi: 10.1002/mma.590.

    [13]

    A. Miranville and S. Zelik, The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions, Discrete Contin. Dynam. Systems, 28 (2010), 275-310.doi: 10.3934/dcds.2010.28.275.

    [14]

    R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics," 2nd edition, Applied Mathematical Sciences, 68, Springer-Verlag, New York, 1997.

    [15]

    E. Zeidler, "Nonlinear Functional Analysis and its Applications. Part I. Fixed-Point Theorems," Springer-Verlag, New York, 1986.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(84) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return