February  2012, 5(1): 49-59. doi: 10.3934/dcdss.2012.5.49

The instantaneous limit for reaction-diffusion systems with a fast irreversible reaction

1. 

Center of Smart Interfaces, Technical University Darmstadt, Petersenstr. 32, 64287 Darmstadt, Germany

2. 

ENS Cachan Bretagne, IRMAR, EUB, Campus de Ker Lann, 35170 Bruz, France

Received  August 2009 Revised  January 2010 Published  February 2011

We consider reaction-diffusion systems which, in addition to certain slow reactions, contain a fast irreversible reaction in which chemical components A and B form a product P. In this situation and under natural assumptions on the RD-system we prove the convergence of weak solutions, as the reaction speed of the irreversible reaction tends to infinity, to a weak solution of a limiting system. The limiting system is a Stefan-type problem with a moving interface at which the chemical reaction front is localized.
Citation: Dieter Bothe, Michel Pierre. The instantaneous limit for reaction-diffusion systems with a fast irreversible reaction. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 49-59. doi: 10.3934/dcdss.2012.5.49
References:
[1]

H. Amann, Global existence for semilinear parabolic problems,, J. Reine Angew. Math., 360 (1985), 47. doi: 10.1515/crll.1985.360.47. Google Scholar

[2]

P. Baras and M. Pierre, Problèmes paraboliques semi-linéaires avec données mesures, (French, English summary),, Applicable Analysis, 18 (1984), 111. doi: 10.1080/00036818408839514. Google Scholar

[3]

Ph. Bénilan, M. G. Crandall and A. Pazy, "Nonlinear Evolution Equations in Banach Spaces,", preprint book., (). Google Scholar

[4]

M. Bisi, F. Confort and L. Desvillettes, Quasi-steady-state approximation for reaction-diffusion equations,, Bull. Inst. Math., 2 (2007), 823. Google Scholar

[5]

D. Bothe, The instantaneous limit of a reaction-diffusion system,, in, 215 (2000), 215. Google Scholar

[6]

D. Bothe, Instantaneous limits of reversible chemical reactions in presence of macroscopic convection,, J. Differ. Equations, 193 (2003), 27. doi: 10.1016/S0022-0396(03)00148-7. Google Scholar

[7]

D. Bothe and D. Hilhorst, A reaction-diffusion system with fast reversible reaction,, J. Math. Anal. Appl., 286 (2003), 125. doi: 10.1016/S0022-247X(03)00457-8. Google Scholar

[8]

D. Bothe, A. Lojewski and H.-J. Warnecke, Computational analysis of an instantaneous chemical reaction in a T-microreactor,, AIChE J., 56 (2010), 1406. Google Scholar

[9]

D. Bothe and M. Pierre, Quasi-steady-state approximation for a reaction-diffusion system with fast intermediate,, J. Math. Anal. Appl., 368 (2010), 120. doi: 10.1016/j.jmaa.2010.02.044. Google Scholar

[10]

H. Brezis and W. A. Strauss, Semi-linear second-order elliptic equations in $L^1$,, J. Math. Soc. Japan, 25 (1973), 565. doi: 10.2969/jmsj/02540565. Google Scholar

[11]

J. R. Cannon and C. D. Hill, On the movement of a chemical reaction interface,, Indiana Univ. Math. J., 20 (1970), 429. doi: 10.1512/iumj.1970.20.20037. Google Scholar

[12]

J. R. Cannon and A. Fasano, Boundary value multidimensional problems in fast chemical reactions,, Archive Rat. Mech. Anal., 53 (1973), 1. doi: 10.1007/BF00735697. Google Scholar

[13]

E. N. Dancer, D. Hilhorst, M. Mimura and L. A. Peletier, Spatial segregation limit of a competition-diffusion system,, European J. Appl. Math., 10 (1999), 97. doi: 10.1017/S0956792598003660. Google Scholar

[14]

L. Desvillettes, K. Fellner, M. Pierre and J. Vovelle, About global existence for quadratic systems of reaction-diffusion,, Advanced Nonlinear Studies, 7 (2007), 491. Google Scholar

[15]

P. Erdi and J. Toth, "Mathematical Models of Chemical Reactions,", Manchester Univ. Press, (1989). Google Scholar

[16]

L. C. Evans, A convergence theorem for a chemical diffusion-reaction system,, Houston J. Math., 6 (1980), 259. Google Scholar

[17]

D. Hilhorst, M. Mimura and H. Ninomiya, Fast reaction limit of competition-diffusion systems,, in, 5 (2009). Google Scholar

[18]

A. Lunardi, "Analytic Semigroups and Optimal Regularity in Parabolic Problems,'', Progress in Nonlinear Differential Equations and Their Applications, (1995). Google Scholar

[19]

R. H. Martin and M. Pierre, Nonlinear reaction-diffusion systems,, in, 185 (1991). Google Scholar

[20]

M. Pierre, Weak solutions and supersolutions in $L^1$ for reaction-diffusion systems,, J. Evol. Equ., 3 (2003), 153. doi: 10.1007/s000280300007. Google Scholar

[21]

M. Pierre and D. Schmitt, Blowup in reaction-diffusion systems with dissipation of mass,, SIAM J. Math. Anal., 28 (1997), 259. doi: 10.1137/S0036141095295437. Google Scholar

[22]

M. Pierre and D. Schmitt, Blowup in reaction-diffusion systems with dissipation of mass,, SIAM Rev., 42 (2000), 93. doi: 10.1137/S0036144599359735. Google Scholar

[23]

Y. Tonegawa, On the regularity of a chemical reaction interface,, Comm. PDEs, 23 (1998), 1181. Google Scholar

[24]

J. L. Vazquez, "The Porous Medium Equation, Mathematical Theory,", Clarendon-Press, (2007). Google Scholar

show all references

References:
[1]

H. Amann, Global existence for semilinear parabolic problems,, J. Reine Angew. Math., 360 (1985), 47. doi: 10.1515/crll.1985.360.47. Google Scholar

[2]

P. Baras and M. Pierre, Problèmes paraboliques semi-linéaires avec données mesures, (French, English summary),, Applicable Analysis, 18 (1984), 111. doi: 10.1080/00036818408839514. Google Scholar

[3]

Ph. Bénilan, M. G. Crandall and A. Pazy, "Nonlinear Evolution Equations in Banach Spaces,", preprint book., (). Google Scholar

[4]

M. Bisi, F. Confort and L. Desvillettes, Quasi-steady-state approximation for reaction-diffusion equations,, Bull. Inst. Math., 2 (2007), 823. Google Scholar

[5]

D. Bothe, The instantaneous limit of a reaction-diffusion system,, in, 215 (2000), 215. Google Scholar

[6]

D. Bothe, Instantaneous limits of reversible chemical reactions in presence of macroscopic convection,, J. Differ. Equations, 193 (2003), 27. doi: 10.1016/S0022-0396(03)00148-7. Google Scholar

[7]

D. Bothe and D. Hilhorst, A reaction-diffusion system with fast reversible reaction,, J. Math. Anal. Appl., 286 (2003), 125. doi: 10.1016/S0022-247X(03)00457-8. Google Scholar

[8]

D. Bothe, A. Lojewski and H.-J. Warnecke, Computational analysis of an instantaneous chemical reaction in a T-microreactor,, AIChE J., 56 (2010), 1406. Google Scholar

[9]

D. Bothe and M. Pierre, Quasi-steady-state approximation for a reaction-diffusion system with fast intermediate,, J. Math. Anal. Appl., 368 (2010), 120. doi: 10.1016/j.jmaa.2010.02.044. Google Scholar

[10]

H. Brezis and W. A. Strauss, Semi-linear second-order elliptic equations in $L^1$,, J. Math. Soc. Japan, 25 (1973), 565. doi: 10.2969/jmsj/02540565. Google Scholar

[11]

J. R. Cannon and C. D. Hill, On the movement of a chemical reaction interface,, Indiana Univ. Math. J., 20 (1970), 429. doi: 10.1512/iumj.1970.20.20037. Google Scholar

[12]

J. R. Cannon and A. Fasano, Boundary value multidimensional problems in fast chemical reactions,, Archive Rat. Mech. Anal., 53 (1973), 1. doi: 10.1007/BF00735697. Google Scholar

[13]

E. N. Dancer, D. Hilhorst, M. Mimura and L. A. Peletier, Spatial segregation limit of a competition-diffusion system,, European J. Appl. Math., 10 (1999), 97. doi: 10.1017/S0956792598003660. Google Scholar

[14]

L. Desvillettes, K. Fellner, M. Pierre and J. Vovelle, About global existence for quadratic systems of reaction-diffusion,, Advanced Nonlinear Studies, 7 (2007), 491. Google Scholar

[15]

P. Erdi and J. Toth, "Mathematical Models of Chemical Reactions,", Manchester Univ. Press, (1989). Google Scholar

[16]

L. C. Evans, A convergence theorem for a chemical diffusion-reaction system,, Houston J. Math., 6 (1980), 259. Google Scholar

[17]

D. Hilhorst, M. Mimura and H. Ninomiya, Fast reaction limit of competition-diffusion systems,, in, 5 (2009). Google Scholar

[18]

A. Lunardi, "Analytic Semigroups and Optimal Regularity in Parabolic Problems,'', Progress in Nonlinear Differential Equations and Their Applications, (1995). Google Scholar

[19]

R. H. Martin and M. Pierre, Nonlinear reaction-diffusion systems,, in, 185 (1991). Google Scholar

[20]

M. Pierre, Weak solutions and supersolutions in $L^1$ for reaction-diffusion systems,, J. Evol. Equ., 3 (2003), 153. doi: 10.1007/s000280300007. Google Scholar

[21]

M. Pierre and D. Schmitt, Blowup in reaction-diffusion systems with dissipation of mass,, SIAM J. Math. Anal., 28 (1997), 259. doi: 10.1137/S0036141095295437. Google Scholar

[22]

M. Pierre and D. Schmitt, Blowup in reaction-diffusion systems with dissipation of mass,, SIAM Rev., 42 (2000), 93. doi: 10.1137/S0036144599359735. Google Scholar

[23]

Y. Tonegawa, On the regularity of a chemical reaction interface,, Comm. PDEs, 23 (1998), 1181. Google Scholar

[24]

J. L. Vazquez, "The Porous Medium Equation, Mathematical Theory,", Clarendon-Press, (2007). Google Scholar

[1]

Marvin S. Müller. Approximation of the interface condition for stochastic Stefan-type problems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4317-4339. doi: 10.3934/dcdsb.2019121

[2]

Congming Li, Eric S. Wright. Modeling chemical reactions in rivers: A three component reaction. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 377-384. doi: 10.3934/dcds.2001.7.373

[3]

Jifa Jiang, Junping Shi. Dynamics of a reaction-diffusion system of autocatalytic chemical reaction. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 245-258. doi: 10.3934/dcds.2008.21.245

[4]

Patrick De Kepper, István Szalai. An effective design method to produce stationary chemical reaction-diffusion patterns. Communications on Pure & Applied Analysis, 2012, 11 (1) : 189-207. doi: 10.3934/cpaa.2012.11.189

[5]

Ivan Gentil, Bogusław Zegarlinski. Asymptotic behaviour of reversible chemical reaction-diffusion equations. Kinetic & Related Models, 2010, 3 (3) : 427-444. doi: 10.3934/krm.2010.3.427

[6]

Parker Childs, James P. Keener. Slow manifold reduction of a stochastic chemical reaction: Exploring Keizer's paradox. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1775-1794. doi: 10.3934/dcdsb.2012.17.1775

[7]

Klemens Fellner, Wolfang Prager, Bao Q. Tang. The entropy method for reaction-diffusion systems without detailed balance: First order chemical reaction networks. Kinetic & Related Models, 2017, 10 (4) : 1055-1087. doi: 10.3934/krm.2017042

[8]

Maya Mincheva, Gheorghe Craciun. Graph-theoretic conditions for zero-eigenvalue Turing instability in general chemical reaction networks. Mathematical Biosciences & Engineering, 2013, 10 (4) : 1207-1226. doi: 10.3934/mbe.2013.10.1207

[9]

Andrea Picco, Lamberto Rondoni. Boltzmann maps for networks of chemical reactions and the multi-stability problem. Networks & Heterogeneous Media, 2009, 4 (3) : 501-526. doi: 10.3934/nhm.2009.4.501

[10]

Thomas I. Seidman. Interface conditions for a singular reaction-diffusion system. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 631-643. doi: 10.3934/dcdss.2009.2.631

[11]

Elena Shchepakina, Olga Korotkova. Canard explosion in chemical and optical systems. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 495-512. doi: 10.3934/dcdsb.2013.18.495

[12]

Xiaoyan Zhang, Yuxiang Zhang. Spatial dynamics of a reaction-diffusion cholera model with spatial heterogeneity. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2625-2640. doi: 10.3934/dcdsb.2018124

[13]

Rebecca McKay, Theodore Kolokolnikov, Paul Muir. Interface oscillations in reaction-diffusion systems above the Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2523-2543. doi: 10.3934/dcdsb.2012.17.2523

[14]

Arno F. Münster. Simulation of stationary chemical patterns and waves in ionic reactions. Discrete & Continuous Dynamical Systems - B, 2002, 2 (1) : 35-46. doi: 10.3934/dcdsb.2002.2.35

[15]

Marzia Bisi, Maria Groppi, Giampiero Spiga. Flame structure from a kinetic model for chemical reactions. Kinetic & Related Models, 2010, 3 (1) : 17-34. doi: 10.3934/krm.2010.3.17

[16]

Marzia Bisi, Giampiero Spiga. On a kinetic BGK model for slow chemical reactions. Kinetic & Related Models, 2011, 4 (1) : 153-167. doi: 10.3934/krm.2011.4.153

[17]

Bogdan Kazmierczak, Zbigniew Peradzynski. Calcium waves with mechano-chemical couplings. Mathematical Biosciences & Engineering, 2013, 10 (3) : 743-759. doi: 10.3934/mbe.2013.10.743

[18]

Ying Han, Zhenyu Lu, Sheng Chen. A hybrid inconsistent sustainable chemical industry evaluation method. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1225-1239. doi: 10.3934/jimo.2018093

[19]

Juan Dávila, Louis Dupaigne, Marcelo Montenegro. The extremal solution of a boundary reaction problem. Communications on Pure & Applied Analysis, 2008, 7 (4) : 795-817. doi: 10.3934/cpaa.2008.7.795

[20]

Takashi Kajiwara. A Heteroclinic Solution to a Variational Problem Corresponding to FitzHugh-Nagumo type Reaction-Diffusion System with Heterogeneity. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2133-2156. doi: 10.3934/cpaa.2017106

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (17)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]