June  2012, 5(3): 507-530. doi: 10.3934/dcdss.2012.5.507

An elliptic problem with degenerate coercivity and a singular quadratic gradient lower order term

1. 

Laboratoire de Mathématiques Appliquées du Havre, Université du Havre, 25, rue Philippe Lebon, 76063 Le Havre, France

Received  August 2010 Revised  September 2010 Published  October 2011

In this paper we study a Dirichlet problem for an elliptic equation with degenerate coercivity and a singular lower order term with natural growth with respect to the gradient. The model problem is $$ \begin{equation} \left\{\begin{array}{11} -div\left(\frac{\nabla u}{(1+|u|)^p}\right) + \frac{|\nabla u|^{2}}{|u|^{\theta}} = f & \mbox{in $\Omega$,} \\ u = 0 & \mbox{on $\partial\Omega$,} \end{array} \right. \end{equation} $$ where $\Omega$ is an open bounded set of $\mathbb{R}^N$, $N\geq 3$ and $p, \theta>0$. The source $f$ is a positive function belonging to some Lebesgue space. We will show that, even if the lower order term is singular, it has some regularizing effects on the solutions, when $p>\theta-1$ and $\theta<2$.
Citation: Gisella Croce. An elliptic problem with degenerate coercivity and a singular quadratic gradient lower order term. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 507-530. doi: 10.3934/dcdss.2012.5.507
References:
[1]

A. Alvino, L. Boccardo, V. Ferone, L. Orsina and G. Trombetti, Existence results for nonlinear elliptic equations with degenerate coercivity,, Ann. Mat. Pura Appl. (4), 182 (2003), 53.  doi: 10.1007/s10231-002-0056-y.  Google Scholar

[2]

D. Arcoya, S. Barile, P. J. Martínez-Aparicio, Singular quasilinear equations with quadratic growth in the gradient without sign condition,, J. Math. Anal. Appl., 350 (2009), 401.  doi: 10.1016/j.jmaa.2008.09.073.  Google Scholar

[3]

D. Arcoya, J. Carmona and P. J. Martínez-Aparicio, Elliptic obstacle problems with natural growth on the gradient and singular nonlinear terms,, Adv. Nonlinear Stud., 7 (2007), 299.   Google Scholar

[4]

D. Arcoya and P. J. Martínez-Aparicio, Quasilinear equations with natural growth,, Rev. Mat. Iberoam., 24 (2008), 597.   Google Scholar

[5]

D. Arcoya, J. Carmona, T. Leonori, P. J. Martínez-Aparicio, L. Orsina and F. Petitta, Existence and non-existence of solutions for singular quadratic quasilinear equations,, J. Differential Equations, 246 (2009), 4006.  doi: 10.1016/j.jde.2009.01.016.  Google Scholar

[6]

A. Bensoussan, L. Boccardo and F. Murat, On a nonlinear partial differential equation having natural growth terms and unbounded solution,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 5 (1988), 347.   Google Scholar

[7]

L. Boccardo, Quasilinear elliptic equations with natural growth terms: The regularizing effect of the lower order terms,, J. Nonlin. Conv. Anal., 7 (2006), 355.   Google Scholar

[8]

L. Boccardo, Dirichlet problems with singular and gradient quadratic lower order terms,, ESAIM Control Optim. Calc. Var., 14 (2008), 411.  doi: 10.1051/cocv:2008031.  Google Scholar

[9]

L. Boccardo, A. Dall'Aglio and L. Orsina, Existence and regularity results for some elliptic equations with degenerate coercivity. Dedicated to Prof. C. Vinti, (Italian) (Perugia, 1996),, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 51.   Google Scholar

[10]

L. Boccardo and T. Gallouët, Strongly nonlinear elliptic equations having natural growth terms and $L^1$ data,, Nonlinear Anal., 19 (1992), 573.  doi: 10.1016/0362-546X(92)90022-7.  Google Scholar

[11]

L. Boccardo, F. Murat and J.-P. Puel, Existence de solutions non bornées pour certaines équations quasi-linéaires,, Port. Math., 41 (1982), 507.   Google Scholar

[12]

L. Boccardo, F. Murat and J.-P. Puel, $L^{\infty}$ estimate for some nonlinear elliptic partial differential equations and application to an existence result,, SIAM J. Math. Anal., 23 (1992), 326.  doi: 10.1137/0523016.  Google Scholar

[13]

L. Boccardo, L. Orsina and M. M. Porzio, Existence results for quasilinear elliptic and parabolic problems with quadratic gradient terms and sources,, preprint., ().   Google Scholar

[14]

G. Croce, The regularizing effects of some lower order terms on the solutions in an elliptic equation with degenerate coercivity,, Rendiconti di Matematica (7), 27 (2007), 299.   Google Scholar

[15]

D. Giachetti and F. Murat, An elliptic problem with a lower order term having singular behaviour,, Boll. Unione Mat. Ital. Sez. B, ().   Google Scholar

[16]

D. Giachetti and M. M. Porzio, Existence results fo some nonuniformly elliptic equations with irregular data,, J. Math. Anal. Appl., 257 (2001), 100.  doi: 10.1006/jmaa.2000.7324.  Google Scholar

[17]

J. B. Keller, On the solutions of $\Delta u= f(u)$,, Comm. Pure Appl. Math., 10 (1957), 503.  doi: 10.1002/cpa.3160100402.  Google Scholar

[18]

F. Leoni and B. Pellacci, Local estimates and global existence for strongly nonlinear parabolic equations with locally integrable data,, J. Evol. Equ., 6 (2006), 113.  doi: 10.1007/s00028-005-0234-7.  Google Scholar

[19]

R. Osserman, On the inequality $\Delta u\geq f(u)$,, Pacific J. Math., 7 (1957), 1641.   Google Scholar

[20]

A. Porretta, Uniqueness and homogeneization for a class of noncoercive operators in divergence form,, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 915.   Google Scholar

[21]

A. Porretta, Existence for elliptic equations in $L^1$ having lower order terms with natural growth,, Port. Math., 57 (2000), 179.   Google Scholar

show all references

References:
[1]

A. Alvino, L. Boccardo, V. Ferone, L. Orsina and G. Trombetti, Existence results for nonlinear elliptic equations with degenerate coercivity,, Ann. Mat. Pura Appl. (4), 182 (2003), 53.  doi: 10.1007/s10231-002-0056-y.  Google Scholar

[2]

D. Arcoya, S. Barile, P. J. Martínez-Aparicio, Singular quasilinear equations with quadratic growth in the gradient without sign condition,, J. Math. Anal. Appl., 350 (2009), 401.  doi: 10.1016/j.jmaa.2008.09.073.  Google Scholar

[3]

D. Arcoya, J. Carmona and P. J. Martínez-Aparicio, Elliptic obstacle problems with natural growth on the gradient and singular nonlinear terms,, Adv. Nonlinear Stud., 7 (2007), 299.   Google Scholar

[4]

D. Arcoya and P. J. Martínez-Aparicio, Quasilinear equations with natural growth,, Rev. Mat. Iberoam., 24 (2008), 597.   Google Scholar

[5]

D. Arcoya, J. Carmona, T. Leonori, P. J. Martínez-Aparicio, L. Orsina and F. Petitta, Existence and non-existence of solutions for singular quadratic quasilinear equations,, J. Differential Equations, 246 (2009), 4006.  doi: 10.1016/j.jde.2009.01.016.  Google Scholar

[6]

A. Bensoussan, L. Boccardo and F. Murat, On a nonlinear partial differential equation having natural growth terms and unbounded solution,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 5 (1988), 347.   Google Scholar

[7]

L. Boccardo, Quasilinear elliptic equations with natural growth terms: The regularizing effect of the lower order terms,, J. Nonlin. Conv. Anal., 7 (2006), 355.   Google Scholar

[8]

L. Boccardo, Dirichlet problems with singular and gradient quadratic lower order terms,, ESAIM Control Optim. Calc. Var., 14 (2008), 411.  doi: 10.1051/cocv:2008031.  Google Scholar

[9]

L. Boccardo, A. Dall'Aglio and L. Orsina, Existence and regularity results for some elliptic equations with degenerate coercivity. Dedicated to Prof. C. Vinti, (Italian) (Perugia, 1996),, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 51.   Google Scholar

[10]

L. Boccardo and T. Gallouët, Strongly nonlinear elliptic equations having natural growth terms and $L^1$ data,, Nonlinear Anal., 19 (1992), 573.  doi: 10.1016/0362-546X(92)90022-7.  Google Scholar

[11]

L. Boccardo, F. Murat and J.-P. Puel, Existence de solutions non bornées pour certaines équations quasi-linéaires,, Port. Math., 41 (1982), 507.   Google Scholar

[12]

L. Boccardo, F. Murat and J.-P. Puel, $L^{\infty}$ estimate for some nonlinear elliptic partial differential equations and application to an existence result,, SIAM J. Math. Anal., 23 (1992), 326.  doi: 10.1137/0523016.  Google Scholar

[13]

L. Boccardo, L. Orsina and M. M. Porzio, Existence results for quasilinear elliptic and parabolic problems with quadratic gradient terms and sources,, preprint., ().   Google Scholar

[14]

G. Croce, The regularizing effects of some lower order terms on the solutions in an elliptic equation with degenerate coercivity,, Rendiconti di Matematica (7), 27 (2007), 299.   Google Scholar

[15]

D. Giachetti and F. Murat, An elliptic problem with a lower order term having singular behaviour,, Boll. Unione Mat. Ital. Sez. B, ().   Google Scholar

[16]

D. Giachetti and M. M. Porzio, Existence results fo some nonuniformly elliptic equations with irregular data,, J. Math. Anal. Appl., 257 (2001), 100.  doi: 10.1006/jmaa.2000.7324.  Google Scholar

[17]

J. B. Keller, On the solutions of $\Delta u= f(u)$,, Comm. Pure Appl. Math., 10 (1957), 503.  doi: 10.1002/cpa.3160100402.  Google Scholar

[18]

F. Leoni and B. Pellacci, Local estimates and global existence for strongly nonlinear parabolic equations with locally integrable data,, J. Evol. Equ., 6 (2006), 113.  doi: 10.1007/s00028-005-0234-7.  Google Scholar

[19]

R. Osserman, On the inequality $\Delta u\geq f(u)$,, Pacific J. Math., 7 (1957), 1641.   Google Scholar

[20]

A. Porretta, Uniqueness and homogeneization for a class of noncoercive operators in divergence form,, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 915.   Google Scholar

[21]

A. Porretta, Existence for elliptic equations in $L^1$ having lower order terms with natural growth,, Port. Math., 57 (2000), 179.   Google Scholar

[1]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[2]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[3]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[4]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[5]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[6]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[7]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[8]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[9]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020274

[10]

Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018

[11]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[12]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[13]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[14]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[15]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[16]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[17]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[18]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[19]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020269

[20]

Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (42)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]