June  2012, 5(3): 567-580. doi: 10.3934/dcdss.2012.5.567

Some singular perturbations results for semilinear hyperbolic problems

1. 

University of Zürich, Institute of Mathematics, Winterthurerstrasse 190, CH-8057 Zurich

2. 

Department of Mathematics, University of M’sila, BP:166, 28000, M’sila, Algeria

Received  August 2010 Revised  December 2010 Published  October 2011

This paper is concerned with the asymptotic behaviour of the solutions of some semilinear hyperbolic problems. Using the monotonicity hypothesis, convergence results are shown in different spaces depending on the derivative directions of an arbitrary domain $\Omega .$ Some improvements are established when $\Omega $ is a cylinder.
Citation: Senoussi Guesmia, Abdelmouhcene Sengouga. Some singular perturbations results for semilinear hyperbolic problems. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 567-580. doi: 10.3934/dcdss.2012.5.567
References:
[1]

B. Brighi and S. Guesmia, Asymptotic behaviour of solutions of hyperbolic problems on a cylindrical domain,, in, 2007 (): 160.   Google Scholar

[2]

M. Chipot, On some anisotropic singular perturbation problems,, Asymptot. Ana., 55 (2007), 125.   Google Scholar

[3]

M. Chipot and S. Guesmia, On the asymptotic behavior of elliptic, anisotropic singular perturbations problems,, Commun. Pure Appl. Anal., 8 (2009), 179.   Google Scholar

[4]

M. Chipot and S. Guesmia, On a class of integro-differential problems,, Commun. Pure Appl. Anal., 9 (2010), 1249.  doi: 10.3934/cpaa.2010.9.1249.  Google Scholar

[5]

M. Chipot and S. Guesmia, On some anisotropic, nonlocal, parabolic singular perturbations problems,, Applicable Analysis, ().   Google Scholar

[6]

M. Chipot and S. Guesmia, Correctors for some asymptotic problems,, Proc. Steklov Inst. Math., 270 (2010), 263.  doi: 10.1134/S0081543810030211.  Google Scholar

[7]

M. Chipot and A. Rougirel, On the asymptotic behaviour of the solution of parabolic problems in cylindrical domains of large size in some directions,, Discrete Contin. Dyn. Syst. Ser. B, 1 (2001), 319.  doi: 10.3934/dcdsb.2001.1.319.  Google Scholar

[8]

M. Chipot and K. Yeressian, Exponential rates of convergence by an iteration technique,, C. R. Math. Acad. Sci. Paris, 346 (2008), 21.   Google Scholar

[9]

S. Guesmia, "Etude du Comportement Asymptotique de certaines Équations aux Dérivées Partielles dans des Domaines Cylindriques,", Thèse Université de Haute Alsace, (2006).   Google Scholar

[10]

S. Guesmia, Some results on the asymptotic behavior for hyperbolic problems in cylindrical domains becoming unbounded,, J. Math. Anal. Appl., 341 (2008), 1190.  doi: 10.1016/j.jmaa.2007.11.001.  Google Scholar

[11]

S. Guesmia, Asymptotic behaviour of elliptic boundary-value problems with some small coefficients,, Electron. J. Differential Equations, 59 (2008), 1.   Google Scholar

[12]

S. Guesmia and A. Sengouga, Anisotropic singular perturbation of hyperbolic problems,, Appl. Math. Comput. \textbf{217} (2011), 217 (2011), 8983.  doi: 10.1016/j.amc.2011.03.104.  Google Scholar

[13]

J.-L. Lions, "Perturbations Singulières dans les Problèmes aux Limites et en Contrôle Optimal,", Lecture Notes in Math., 323 (1973).   Google Scholar

[14]

J.-L. Lions and W. A. Strauss, Some non-linear evolution equations,, Bull. Soc. Math. France, 93 (1965), 43.   Google Scholar

[15]

W. A. Strauss, On continuity of functions with values in various Banach spaces,, Pacific J. Math., 19 (1966), 543.   Google Scholar

show all references

References:
[1]

B. Brighi and S. Guesmia, Asymptotic behaviour of solutions of hyperbolic problems on a cylindrical domain,, in, 2007 (): 160.   Google Scholar

[2]

M. Chipot, On some anisotropic singular perturbation problems,, Asymptot. Ana., 55 (2007), 125.   Google Scholar

[3]

M. Chipot and S. Guesmia, On the asymptotic behavior of elliptic, anisotropic singular perturbations problems,, Commun. Pure Appl. Anal., 8 (2009), 179.   Google Scholar

[4]

M. Chipot and S. Guesmia, On a class of integro-differential problems,, Commun. Pure Appl. Anal., 9 (2010), 1249.  doi: 10.3934/cpaa.2010.9.1249.  Google Scholar

[5]

M. Chipot and S. Guesmia, On some anisotropic, nonlocal, parabolic singular perturbations problems,, Applicable Analysis, ().   Google Scholar

[6]

M. Chipot and S. Guesmia, Correctors for some asymptotic problems,, Proc. Steklov Inst. Math., 270 (2010), 263.  doi: 10.1134/S0081543810030211.  Google Scholar

[7]

M. Chipot and A. Rougirel, On the asymptotic behaviour of the solution of parabolic problems in cylindrical domains of large size in some directions,, Discrete Contin. Dyn. Syst. Ser. B, 1 (2001), 319.  doi: 10.3934/dcdsb.2001.1.319.  Google Scholar

[8]

M. Chipot and K. Yeressian, Exponential rates of convergence by an iteration technique,, C. R. Math. Acad. Sci. Paris, 346 (2008), 21.   Google Scholar

[9]

S. Guesmia, "Etude du Comportement Asymptotique de certaines Équations aux Dérivées Partielles dans des Domaines Cylindriques,", Thèse Université de Haute Alsace, (2006).   Google Scholar

[10]

S. Guesmia, Some results on the asymptotic behavior for hyperbolic problems in cylindrical domains becoming unbounded,, J. Math. Anal. Appl., 341 (2008), 1190.  doi: 10.1016/j.jmaa.2007.11.001.  Google Scholar

[11]

S. Guesmia, Asymptotic behaviour of elliptic boundary-value problems with some small coefficients,, Electron. J. Differential Equations, 59 (2008), 1.   Google Scholar

[12]

S. Guesmia and A. Sengouga, Anisotropic singular perturbation of hyperbolic problems,, Appl. Math. Comput. \textbf{217} (2011), 217 (2011), 8983.  doi: 10.1016/j.amc.2011.03.104.  Google Scholar

[13]

J.-L. Lions, "Perturbations Singulières dans les Problèmes aux Limites et en Contrôle Optimal,", Lecture Notes in Math., 323 (1973).   Google Scholar

[14]

J.-L. Lions and W. A. Strauss, Some non-linear evolution equations,, Bull. Soc. Math. France, 93 (1965), 43.   Google Scholar

[15]

W. A. Strauss, On continuity of functions with values in various Banach spaces,, Pacific J. Math., 19 (1966), 543.   Google Scholar

[1]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, 2021, 20 (1) : 405-425. doi: 10.3934/cpaa.2020274

[2]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[3]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[4]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[5]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[6]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[7]

Tahir Aliyev Azeroğlu, Bülent Nafi Örnek, Timur Düzenli. Some results on the behaviour of transfer functions at the right half plane. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020106

[8]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[9]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[10]

Hassan Mohammad. A diagonal PRP-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial & Management Optimization, 2021, 17 (1) : 101-116. doi: 10.3934/jimo.2019101

[11]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[12]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[13]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[14]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[15]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[16]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[17]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[18]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[19]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270

[20]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (56)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]