\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Rate-independent processes with linear growth energies and time-dependent boundary conditions

Abstract Related Papers Cited by
  • A rate-independent evolution problem is considered for which the stored energy density depends on the gradient of the displacement. The stored energy density does not have to be quasiconvex and is assumed to exhibit linear growth at infinity; no further assumptions are made on the behaviour at infinity. We analyse an evolutionary process with positively $1$-homogeneous dissipation and time-dependent Dirichlet boundary conditions.
    Mathematics Subject Classification: Primary: 74C15; Secondary: 49J45, 74G65.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    I. V. Chenchiah, M. O. Rieger and J. Zimmer, Gradient flows in asymmetric metric spaces, Nonlinear Anal., 71 (2009), 5820-5834.doi: 10.1016/j.na.2009.05.006.

    [2]

    S. Conti and M. Ortiz, Dislocation microstructures and the effective behavior of single crystals, Arch. Ration. Mech. Anal., 176 (2005), 103-147.doi: 10.1007/s00205-004-0353-2.

    [3]

    G. Dal Maso, G. A. Francfort and R. Toader, Quasistatic crack growth in nonlinear elasticity, Arch. Ration. Mech. Anal., 176 (2005), 165-225.doi: 10.1007/s00205-004-0351-4.

    [4]

    R. J. DiPerna and A. J. Majda, Oscillations and concentrations in weak solutions of the incompressible fluid equations, Comm. Math. Phys., 108 (1987), 667-689.doi: 10.1007/BF01214424.

    [5]

    G. Francfort and A. Mielke, Existence results for a class of rate-independent material models with nonconvex elastic energies, J. Reine Angew. Math., 595 (2006), 55-91.doi: 10.1515/CRELLE.2006.044.

    [6]

    M. Kružík and T. Roubíček, On the measures of DiPerna and Majda, Math. Bohem., 122 (1997), 383-399.

    [7]

    M. Kružík and J. Zimmer, A model of shape memory alloys accounting for plasticity, IMA Journal of Applied Mathematics, 76 (2011), 193-216.doi: 10.1093/imamat/hxq058.

    [8]

    M. Kružík and J. ZimmerVanishing regularisation for gradient flows via $\Gamma$-limit, in preparation.

    [9]

    M. Kružík and J. Zimmer, Evolutionary problems in non-reflexive spaces, ESAIM Control Optim. Calc. Var., 16 (2010), 1-22.

    [10]

    A. Mainik and A. Mielke, Global existence for rate-independent gradient plasticity at finite strain, J. Nonlinear Sci., 19 (2009), 221-248.doi: 10.1007/s00332-008-9033-y.

    [11]

    A. Mielke and T. Roubíček, A rate-independent model for inelastic behavior of shape-memory alloys, Multiscale Model. Simul., 1 (2003), 571-597 (electronic).doi: 10.1137/S1540345903422860.

    [12]

    A. Mielke, F. Theil and V. I. Levitas, A variational formulation of rate-independent phase transformations using an extremum principle, Arch. Ration. Mech. Anal., 162 (2002), 137-177.doi: 10.1007/s002050200194.

    [13]

    M. Ortiz and E. A. Repetto, Nonconvex energy minimization and dislocation structures in ductile single crystals, J. Mech. Phys. Solids, 47 (1999), 397-462.doi: 10.1016/S0022-5096(97)00096-3.

    [14]

    T. Roubíček, "Relaxation in Optimization Theory and Variational Calculus,'' de Gruyter Series in Nonlinear Analysis and Applications, 4, Walter de Gruyter & Co., Berlin, 1997.

    [15]

    J. Souček, Spaces of functions on domain $\Omega $, whose $k$-th derivatives are measures defined on $\bar \Omega $, Časopis Pĕst. Mat., 97 (1972), 10-46, 94.

    [16]

    D. W. Stroock and S. R. S. Varadhan, "Multidimensional Diffusion Processes,'' Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 233, Springer-Verlag, Berlin-New York, 1979.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(60) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return