June  2012, 5(3): 591-604. doi: 10.3934/dcdss.2012.5.591

Rate-independent processes with linear growth energies and time-dependent boundary conditions

1. 

Institute of Information Theory and Automation of the ASCR, Pod vodárenskou věží 4, CZ-182 08 Praha 8, Czech Republic

2. 

Department of Mathematical Sciences, University of Bath, Bath BA2 7AY

Received  August 2010 Revised  January 2011 Published  October 2011

A rate-independent evolution problem is considered for which the stored energy density depends on the gradient of the displacement. The stored energy density does not have to be quasiconvex and is assumed to exhibit linear growth at infinity; no further assumptions are made on the behaviour at infinity. We analyse an evolutionary process with positively $1$-homogeneous dissipation and time-dependent Dirichlet boundary conditions.
Citation: Martin Kružík, Johannes Zimmer. Rate-independent processes with linear growth energies and time-dependent boundary conditions. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 591-604. doi: 10.3934/dcdss.2012.5.591
References:
[1]

I. V. Chenchiah, M. O. Rieger and J. Zimmer, Gradient flows in asymmetric metric spaces,, Nonlinear Anal., 71 (2009), 5820.  doi: 10.1016/j.na.2009.05.006.  Google Scholar

[2]

S. Conti and M. Ortiz, Dislocation microstructures and the effective behavior of single crystals,, Arch. Ration. Mech. Anal., 176 (2005), 103.  doi: 10.1007/s00205-004-0353-2.  Google Scholar

[3]

G. Dal Maso, G. A. Francfort and R. Toader, Quasistatic crack growth in nonlinear elasticity,, Arch. Ration. Mech. Anal., 176 (2005), 165.  doi: 10.1007/s00205-004-0351-4.  Google Scholar

[4]

R. J. DiPerna and A. J. Majda, Oscillations and concentrations in weak solutions of the incompressible fluid equations,, Comm. Math. Phys., 108 (1987), 667.  doi: 10.1007/BF01214424.  Google Scholar

[5]

G. Francfort and A. Mielke, Existence results for a class of rate-independent material models with nonconvex elastic energies,, J. Reine Angew. Math., 595 (2006), 55.  doi: 10.1515/CRELLE.2006.044.  Google Scholar

[6]

M. Kružík and T. Roubíček, On the measures of DiPerna and Majda,, Math. Bohem., 122 (1997), 383.   Google Scholar

[7]

M. Kružík and J. Zimmer, A model of shape memory alloys accounting for plasticity,, IMA Journal of Applied Mathematics, 76 (2011), 193.  doi: 10.1093/imamat/hxq058.  Google Scholar

[8]

M. Kružík and J. Zimmer, Vanishing regularisation for gradient flows via $\Gamma$-limit,, in preparation., ().   Google Scholar

[9]

M. Kružík and J. Zimmer, Evolutionary problems in non-reflexive spaces,, ESAIM Control Optim. Calc. Var., 16 (2010), 1.   Google Scholar

[10]

A. Mainik and A. Mielke, Global existence for rate-independent gradient plasticity at finite strain,, J. Nonlinear Sci., 19 (2009), 221.  doi: 10.1007/s00332-008-9033-y.  Google Scholar

[11]

A. Mielke and T. Roubíček, A rate-independent model for inelastic behavior of shape-memory alloys,, Multiscale Model. Simul., 1 (2003), 571.  doi: 10.1137/S1540345903422860.  Google Scholar

[12]

A. Mielke, F. Theil and V. I. Levitas, A variational formulation of rate-independent phase transformations using an extremum principle,, Arch. Ration. Mech. Anal., 162 (2002), 137.  doi: 10.1007/s002050200194.  Google Scholar

[13]

M. Ortiz and E. A. Repetto, Nonconvex energy minimization and dislocation structures in ductile single crystals,, J. Mech. Phys. Solids, 47 (1999), 397.  doi: 10.1016/S0022-5096(97)00096-3.  Google Scholar

[14]

T. Roubíček, "Relaxation in Optimization Theory and Variational Calculus,'', de Gruyter Series in Nonlinear Analysis and Applications, 4 (1997).   Google Scholar

[15]

J. Souček, Spaces of functions on domain $\Omega $, whose $k$-th derivatives are measures defined on $\bar \Omega $,, Časopis Pĕst. Mat., 97 (1972), 10.   Google Scholar

[16]

D. W. Stroock and S. R. S. Varadhan, "Multidimensional Diffusion Processes,'', Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 233 (1979).   Google Scholar

show all references

References:
[1]

I. V. Chenchiah, M. O. Rieger and J. Zimmer, Gradient flows in asymmetric metric spaces,, Nonlinear Anal., 71 (2009), 5820.  doi: 10.1016/j.na.2009.05.006.  Google Scholar

[2]

S. Conti and M. Ortiz, Dislocation microstructures and the effective behavior of single crystals,, Arch. Ration. Mech. Anal., 176 (2005), 103.  doi: 10.1007/s00205-004-0353-2.  Google Scholar

[3]

G. Dal Maso, G. A. Francfort and R. Toader, Quasistatic crack growth in nonlinear elasticity,, Arch. Ration. Mech. Anal., 176 (2005), 165.  doi: 10.1007/s00205-004-0351-4.  Google Scholar

[4]

R. J. DiPerna and A. J. Majda, Oscillations and concentrations in weak solutions of the incompressible fluid equations,, Comm. Math. Phys., 108 (1987), 667.  doi: 10.1007/BF01214424.  Google Scholar

[5]

G. Francfort and A. Mielke, Existence results for a class of rate-independent material models with nonconvex elastic energies,, J. Reine Angew. Math., 595 (2006), 55.  doi: 10.1515/CRELLE.2006.044.  Google Scholar

[6]

M. Kružík and T. Roubíček, On the measures of DiPerna and Majda,, Math. Bohem., 122 (1997), 383.   Google Scholar

[7]

M. Kružík and J. Zimmer, A model of shape memory alloys accounting for plasticity,, IMA Journal of Applied Mathematics, 76 (2011), 193.  doi: 10.1093/imamat/hxq058.  Google Scholar

[8]

M. Kružík and J. Zimmer, Vanishing regularisation for gradient flows via $\Gamma$-limit,, in preparation., ().   Google Scholar

[9]

M. Kružík and J. Zimmer, Evolutionary problems in non-reflexive spaces,, ESAIM Control Optim. Calc. Var., 16 (2010), 1.   Google Scholar

[10]

A. Mainik and A. Mielke, Global existence for rate-independent gradient plasticity at finite strain,, J. Nonlinear Sci., 19 (2009), 221.  doi: 10.1007/s00332-008-9033-y.  Google Scholar

[11]

A. Mielke and T. Roubíček, A rate-independent model for inelastic behavior of shape-memory alloys,, Multiscale Model. Simul., 1 (2003), 571.  doi: 10.1137/S1540345903422860.  Google Scholar

[12]

A. Mielke, F. Theil and V. I. Levitas, A variational formulation of rate-independent phase transformations using an extremum principle,, Arch. Ration. Mech. Anal., 162 (2002), 137.  doi: 10.1007/s002050200194.  Google Scholar

[13]

M. Ortiz and E. A. Repetto, Nonconvex energy minimization and dislocation structures in ductile single crystals,, J. Mech. Phys. Solids, 47 (1999), 397.  doi: 10.1016/S0022-5096(97)00096-3.  Google Scholar

[14]

T. Roubíček, "Relaxation in Optimization Theory and Variational Calculus,'', de Gruyter Series in Nonlinear Analysis and Applications, 4 (1997).   Google Scholar

[15]

J. Souček, Spaces of functions on domain $\Omega $, whose $k$-th derivatives are measures defined on $\bar \Omega $,, Časopis Pĕst. Mat., 97 (1972), 10.   Google Scholar

[16]

D. W. Stroock and S. R. S. Varadhan, "Multidimensional Diffusion Processes,'', Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 233 (1979).   Google Scholar

[1]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[2]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[3]

Håkon Hoel, Gaukhar Shaimerdenova, Raúl Tempone. Multilevel Ensemble Kalman Filtering based on a sample average of independent EnKF estimators. Foundations of Data Science, 2020  doi: 10.3934/fods.2020017

[4]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[5]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[6]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[7]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[8]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[9]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020274

[10]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[11]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[12]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[13]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[14]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[15]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[16]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[17]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[18]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[19]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[20]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (24)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]