June  2012, 5(3): 605-629. doi: 10.3934/dcdss.2012.5.605

On a p-curl system arising in electromagnetism

1. 

Department of Mathematics/CMAT, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal, Portugal

2. 

CMAF/Universidade de Lisboa, Av. Prof. Gama Pinto, 2, 1649-003 Lisboa

Received  September 2010 Revised  June 2011 Published  October 2011

We prove existence of solution of a $p$-curl type evolutionary system arising in electromagnetism with a power nonlinearity of order $p$, $1 < p < \infty$, assuming natural tangential boundary conditions. We consider also the asymptotic behaviour in the power obtaining, when $p$ tends to infinity, a variational inequality with a curl constraint. We also discuss the existence, uniqueness and continuous dependence on the data of the solutions to general variational inequalities with curl constraints dependent on time, as well as the asymptotic stabilization in time towards the stationary solution with and without constraint.
Citation: Fernando Miranda, José-Francisco Rodrigues, Lisa Santos. On a p-curl system arising in electromagnetism. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 605-629. doi: 10.3934/dcdss.2012.5.605
References:
[1]

C. Amrouche and N. Seloula, $L^p$-theory for vector potentials and Sobolev's inequalities for vector fields,, C. R. Math. Acad. Sci. Paris, 349 (2011), 529.   Google Scholar

[2]

A. Bermúdez, R. Muñoz-Sola and F. Pena, A nonlinear partial differential system arising in thermoelectricity,, European J. Appl. Math., 16 (2005), 683.   Google Scholar

[3]

A. Bossavit, "Computational Electromagnetism. Variational Formulations, Complementarity, Edge Elements,'', Electromagnetism, (1998).   Google Scholar

[4]

R. Dautray and J.-L. Lions, "Mathematical Analysis and Numerical Methods for Science and Technology,'' Vol. 3, With the collaboration of Michel Artola and Michel Cessenat, Translated from the French by John C. Amson,, Springer-Verlag, (1990).   Google Scholar

[5]

A. Haraux, "Nonlinear Evolution Equations--Global Behavior of Solutions,'' Lecture Notes in Mathematics, 841,, Springer-Verlag, (1981).   Google Scholar

[6]

L. Landau and E. Lifshitz, "Electrodynamics of Continuous Media,'', Course of Theoretical Physics, (1960).   Google Scholar

[7]

J.-L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires,'', Dunod, (1969).   Google Scholar

[8]

F. Miranda, J.-F. Rodrigues and L. Santos, A class of stationary nonlinear Maxwell systems,, Math. Models Methods Appl. Sci., 19 (2009), 1883.  doi: 10.1142/S0218202509003966.  Google Scholar

[9]

D. Mitrea, M. Mitrea and J. Pipher, Vector potential theory on nonsmooth domains in $R^3$ and applications to electromagnetic scattering,, J. Fourier Anal. Appl., 3 (1997), 131.  doi: 10.1007/BF02649132.  Google Scholar

[10]

M. Mitrea, Boundary value problems for Dirac operators and Maxwell's equations in non-smooth domains,, Math. Methods Appl. Sci., 25 (2002), 1355.  doi: 10.1002/mma.375.  Google Scholar

[11]

L. Prigozhin, On the Bean critical-state model in superconductivity,, European J. Appl. Math., 7 (1996), 237.   Google Scholar

[12]

L. Santos, A diffusion problem with gradient constraint and evolutive Dirichlet condition,, Port. Math., 48 (1991), 441.   Google Scholar

[13]

L. Santos, Variational problems with non-constant gradient constraints,, Port. Math. (N.S.), 59 (2002), 205.   Google Scholar

[14]

C. Simader and H. Sohr, A new approach to the Helmholtz decomposition and the Neumann problem in $L^q$-spaces for bounded and exterior domains,, in, 11 (1992), 1.   Google Scholar

[15]

J. Simon, Quelques propriétés de solutions d'équations et d'inéquations d'évolution paraboliques non linéaires,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 2 (1975), 585.   Google Scholar

[16]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Ann. Mat. Pura Appl. (4), 146 (1987), 65.   Google Scholar

[17]

S. Sobolev, "Applications of Functional Analysis in Mathematical Physics,'', Translations of Mathematical Monographs, (1963).   Google Scholar

[18]

W. von Wahl, Estimating $\nabla u$ by div $u$ and curl $u$,, Math. Methods Appl. Sci., 15 (1992), 123.  doi: 10.1002/mma.1670150206.  Google Scholar

[19]

H.-M. Yin, On a nonlinear Maxwell's system in quasi-stationary electromagnetic fields,, Math. Models Methods Appl. Sci., 14 (2004), 1521.  doi: 10.1142/S0218202504003787.  Google Scholar

[20]

H.-M. Yin, B. Li, and J. Zou, A degenerate evolution system modeling Bean's critical-state type-II superconductors,, Discrete Contin. Dyn. Syst., 8 (2002), 781.  doi: 10.3934/dcds.2002.8.781.  Google Scholar

[21]

S. Zheng, "Nonlinear Evolution Equations,'' Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 133,, Chapman & Hall/CRC, (2004).   Google Scholar

show all references

References:
[1]

C. Amrouche and N. Seloula, $L^p$-theory for vector potentials and Sobolev's inequalities for vector fields,, C. R. Math. Acad. Sci. Paris, 349 (2011), 529.   Google Scholar

[2]

A. Bermúdez, R. Muñoz-Sola and F. Pena, A nonlinear partial differential system arising in thermoelectricity,, European J. Appl. Math., 16 (2005), 683.   Google Scholar

[3]

A. Bossavit, "Computational Electromagnetism. Variational Formulations, Complementarity, Edge Elements,'', Electromagnetism, (1998).   Google Scholar

[4]

R. Dautray and J.-L. Lions, "Mathematical Analysis and Numerical Methods for Science and Technology,'' Vol. 3, With the collaboration of Michel Artola and Michel Cessenat, Translated from the French by John C. Amson,, Springer-Verlag, (1990).   Google Scholar

[5]

A. Haraux, "Nonlinear Evolution Equations--Global Behavior of Solutions,'' Lecture Notes in Mathematics, 841,, Springer-Verlag, (1981).   Google Scholar

[6]

L. Landau and E. Lifshitz, "Electrodynamics of Continuous Media,'', Course of Theoretical Physics, (1960).   Google Scholar

[7]

J.-L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires,'', Dunod, (1969).   Google Scholar

[8]

F. Miranda, J.-F. Rodrigues and L. Santos, A class of stationary nonlinear Maxwell systems,, Math. Models Methods Appl. Sci., 19 (2009), 1883.  doi: 10.1142/S0218202509003966.  Google Scholar

[9]

D. Mitrea, M. Mitrea and J. Pipher, Vector potential theory on nonsmooth domains in $R^3$ and applications to electromagnetic scattering,, J. Fourier Anal. Appl., 3 (1997), 131.  doi: 10.1007/BF02649132.  Google Scholar

[10]

M. Mitrea, Boundary value problems for Dirac operators and Maxwell's equations in non-smooth domains,, Math. Methods Appl. Sci., 25 (2002), 1355.  doi: 10.1002/mma.375.  Google Scholar

[11]

L. Prigozhin, On the Bean critical-state model in superconductivity,, European J. Appl. Math., 7 (1996), 237.   Google Scholar

[12]

L. Santos, A diffusion problem with gradient constraint and evolutive Dirichlet condition,, Port. Math., 48 (1991), 441.   Google Scholar

[13]

L. Santos, Variational problems with non-constant gradient constraints,, Port. Math. (N.S.), 59 (2002), 205.   Google Scholar

[14]

C. Simader and H. Sohr, A new approach to the Helmholtz decomposition and the Neumann problem in $L^q$-spaces for bounded and exterior domains,, in, 11 (1992), 1.   Google Scholar

[15]

J. Simon, Quelques propriétés de solutions d'équations et d'inéquations d'évolution paraboliques non linéaires,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 2 (1975), 585.   Google Scholar

[16]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Ann. Mat. Pura Appl. (4), 146 (1987), 65.   Google Scholar

[17]

S. Sobolev, "Applications of Functional Analysis in Mathematical Physics,'', Translations of Mathematical Monographs, (1963).   Google Scholar

[18]

W. von Wahl, Estimating $\nabla u$ by div $u$ and curl $u$,, Math. Methods Appl. Sci., 15 (1992), 123.  doi: 10.1002/mma.1670150206.  Google Scholar

[19]

H.-M. Yin, On a nonlinear Maxwell's system in quasi-stationary electromagnetic fields,, Math. Models Methods Appl. Sci., 14 (2004), 1521.  doi: 10.1142/S0218202504003787.  Google Scholar

[20]

H.-M. Yin, B. Li, and J. Zou, A degenerate evolution system modeling Bean's critical-state type-II superconductors,, Discrete Contin. Dyn. Syst., 8 (2002), 781.  doi: 10.3934/dcds.2002.8.781.  Google Scholar

[21]

S. Zheng, "Nonlinear Evolution Equations,'' Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 133,, Chapman & Hall/CRC, (2004).   Google Scholar

[1]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[2]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020274

[3]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020271

[4]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[5]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[6]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[7]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[8]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[9]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[10]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[11]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[12]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[13]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[14]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[15]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[16]

Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018

[17]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[18]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[19]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

[20]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (48)
  • HTML views (0)
  • Cited by (1)

[Back to Top]