• Previous Article
    Support properties of solutions to nonlinear parabolic equations with variable density in the hyperbolic space
  • DCDS-S Home
  • This Issue
  • Next Article
    Survey on time periodic problem for fluid flow under inhomogeneous boundary condition
June  2012, 5(3): 641-656. doi: 10.3934/dcdss.2012.5.641

An explicit stable numerical scheme for the $1D$ transport equation

1. 

Commissariat à l’Énergie Atomique (CEA), DEN/DANS/DM2S/SFME/LETR, 91191 Gif-sur-Yvette, France

Received  August 2010 Revised  October 2010 Published  October 2011

We derive in this paper a numerical scheme in order to calculate solutions of $1D$ transport equations. This $2nd$-order scheme is based on the method of characteristics and consists of two steps: the first step is about the approximation of the foot of the characteristic curve whereas the second one deals with the computation of the solution at this point. The main idea in our scheme is to combine two $2nd$-order interpolation schemes so as to preserve the maximum principle. The resulting method is designed for classical solutions and is unconditionally stable.
Citation: Yohan Penel. An explicit stable numerical scheme for the $1D$ transport equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 641-656. doi: 10.3934/dcdss.2012.5.641
References:
[1]

C. Bardos, M. Bercovier and O. Pironneau, The vortex method with finite elements,, Math. Comp., 36 (1981), 119.  doi: 10.1090/S0025-5718-1981-0595046-3.  Google Scholar

[2]

F. Boyer and P. Fabrie, "Éléments d'Analyse pour l'Étude de Quelques Modèles d'Écoulements de Fluides Visqueux Incompressibles,'', Mathématiques & Applications (Berlin), 52 (2006).   Google Scholar

[3]

J. Burgers, "A Mathematical Model Illustrating the Theory of Turbulence,", edited by Richard von Mises and Theodore von Kármán, (1948), 171.  doi: 10.1016/S0065-2156(08)70100-5.  Google Scholar

[4]

S. Dellacherie, On a diphasic low Mach number system,, M2AN Math. Model. Numer. Anal., 39 (2005), 487.  doi: 10.1051/m2an:2005020.  Google Scholar

[5]

B. Després and F. Lagoutière, Contact discontinuity capturing schemes for linear advection and compressible gas dynamics,, J. Sci. Comput., 16 (2001), 479.  doi: 10.1023/A:1013298408777.  Google Scholar

[6]

J. Douglas Jr. and T. Russell, Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures,, SIAM J. Numer. Anal., 19 (1982), 871.   Google Scholar

[7]

J. Douglas Jr., C.-S. Huang and F. Pereira, The modified method of characteristics with adjusted advection,, Numer. Math., 83 (1999), 353.  doi: 10.1007/s002110050453.  Google Scholar

[8]

G. Fourestey, "Simulation Numérique et Contrôle Optimal d'Interactions Fluide Incompressible/Structure par une Méthode de Lagrange-Galerkin d'Ordre 2,'', Ph.D Thesis, (2002).   Google Scholar

[9]

E. Godlewski and P.-A. Raviart, "Numerical Approximation of Hyperbolic Systems of Conservation Laws,'', Applied Mathematical Sciences, 118 (1996).   Google Scholar

[10]

F. Holly and A. Preissmann, Accurate calculation of transport in two dimensions,, J. Hydr. Div., 103 (1977), 1259.   Google Scholar

[11]

R. LeVeque, "Numerical Methods for Conservation Laws," Second edition,, Lectures in Mathematics ETH Zürich, (1992).   Google Scholar

[12]

J. Marsden and A. Chorin, "A Mathematical Introduction to Fluid Mechanics,", Springer-Verlag, (1979).   Google Scholar

[13]

S. Osher and J. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations,, J. Comput. Phys., 79 (1988), 12.  doi: 10.1016/0021-9991(88)90002-2.  Google Scholar

[14]

Y. Penel, "Étude Théorique et Numérique de la Déformation d'une Interface Séparant deux Fluides Non-Miscibles à Bas Nombre de Mach,", Ph.D Thesis, ().   Google Scholar

[15]

Y. Penel, S. Dellacherie and O. Lafitte, Global solutions to the 1D Abstract Bubble Vibration model,, Submitted., ().   Google Scholar

[16]

O. Pironneau, On the transport-diffusion algorithm and its applications to the Navier-Stokes equations,, Numer. Math., 38 (): 309.  doi: 10.1007/BF01396435.  Google Scholar

show all references

References:
[1]

C. Bardos, M. Bercovier and O. Pironneau, The vortex method with finite elements,, Math. Comp., 36 (1981), 119.  doi: 10.1090/S0025-5718-1981-0595046-3.  Google Scholar

[2]

F. Boyer and P. Fabrie, "Éléments d'Analyse pour l'Étude de Quelques Modèles d'Écoulements de Fluides Visqueux Incompressibles,'', Mathématiques & Applications (Berlin), 52 (2006).   Google Scholar

[3]

J. Burgers, "A Mathematical Model Illustrating the Theory of Turbulence,", edited by Richard von Mises and Theodore von Kármán, (1948), 171.  doi: 10.1016/S0065-2156(08)70100-5.  Google Scholar

[4]

S. Dellacherie, On a diphasic low Mach number system,, M2AN Math. Model. Numer. Anal., 39 (2005), 487.  doi: 10.1051/m2an:2005020.  Google Scholar

[5]

B. Després and F. Lagoutière, Contact discontinuity capturing schemes for linear advection and compressible gas dynamics,, J. Sci. Comput., 16 (2001), 479.  doi: 10.1023/A:1013298408777.  Google Scholar

[6]

J. Douglas Jr. and T. Russell, Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures,, SIAM J. Numer. Anal., 19 (1982), 871.   Google Scholar

[7]

J. Douglas Jr., C.-S. Huang and F. Pereira, The modified method of characteristics with adjusted advection,, Numer. Math., 83 (1999), 353.  doi: 10.1007/s002110050453.  Google Scholar

[8]

G. Fourestey, "Simulation Numérique et Contrôle Optimal d'Interactions Fluide Incompressible/Structure par une Méthode de Lagrange-Galerkin d'Ordre 2,'', Ph.D Thesis, (2002).   Google Scholar

[9]

E. Godlewski and P.-A. Raviart, "Numerical Approximation of Hyperbolic Systems of Conservation Laws,'', Applied Mathematical Sciences, 118 (1996).   Google Scholar

[10]

F. Holly and A. Preissmann, Accurate calculation of transport in two dimensions,, J. Hydr. Div., 103 (1977), 1259.   Google Scholar

[11]

R. LeVeque, "Numerical Methods for Conservation Laws," Second edition,, Lectures in Mathematics ETH Zürich, (1992).   Google Scholar

[12]

J. Marsden and A. Chorin, "A Mathematical Introduction to Fluid Mechanics,", Springer-Verlag, (1979).   Google Scholar

[13]

S. Osher and J. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations,, J. Comput. Phys., 79 (1988), 12.  doi: 10.1016/0021-9991(88)90002-2.  Google Scholar

[14]

Y. Penel, "Étude Théorique et Numérique de la Déformation d'une Interface Séparant deux Fluides Non-Miscibles à Bas Nombre de Mach,", Ph.D Thesis, ().   Google Scholar

[15]

Y. Penel, S. Dellacherie and O. Lafitte, Global solutions to the 1D Abstract Bubble Vibration model,, Submitted., ().   Google Scholar

[16]

O. Pironneau, On the transport-diffusion algorithm and its applications to the Navier-Stokes equations,, Numer. Math., 38 (): 309.  doi: 10.1007/BF01396435.  Google Scholar

[1]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[2]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[3]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[4]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[5]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[6]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[7]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[8]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[9]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[10]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[11]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[12]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[13]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[14]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[15]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[16]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020269

[17]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[18]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[19]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[20]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (39)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]