• Previous Article
    Support properties of solutions to nonlinear parabolic equations with variable density in the hyperbolic space
  • DCDS-S Home
  • This Issue
  • Next Article
    Survey on time periodic problem for fluid flow under inhomogeneous boundary condition
June  2012, 5(3): 641-656. doi: 10.3934/dcdss.2012.5.641

An explicit stable numerical scheme for the $1D$ transport equation

1. 

Commissariat à l’Énergie Atomique (CEA), DEN/DANS/DM2S/SFME/LETR, 91191 Gif-sur-Yvette, France

Received  August 2010 Revised  October 2010 Published  October 2011

We derive in this paper a numerical scheme in order to calculate solutions of $1D$ transport equations. This $2nd$-order scheme is based on the method of characteristics and consists of two steps: the first step is about the approximation of the foot of the characteristic curve whereas the second one deals with the computation of the solution at this point. The main idea in our scheme is to combine two $2nd$-order interpolation schemes so as to preserve the maximum principle. The resulting method is designed for classical solutions and is unconditionally stable.
Citation: Yohan Penel. An explicit stable numerical scheme for the $1D$ transport equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 641-656. doi: 10.3934/dcdss.2012.5.641
References:
[1]

C. Bardos, M. Bercovier and O. Pironneau, The vortex method with finite elements,, Math. Comp., 36 (1981), 119.  doi: 10.1090/S0025-5718-1981-0595046-3.  Google Scholar

[2]

F. Boyer and P. Fabrie, "Éléments d'Analyse pour l'Étude de Quelques Modèles d'Écoulements de Fluides Visqueux Incompressibles,'', Mathématiques & Applications (Berlin), 52 (2006).   Google Scholar

[3]

J. Burgers, "A Mathematical Model Illustrating the Theory of Turbulence,", edited by Richard von Mises and Theodore von Kármán, (1948), 171.  doi: 10.1016/S0065-2156(08)70100-5.  Google Scholar

[4]

S. Dellacherie, On a diphasic low Mach number system,, M2AN Math. Model. Numer. Anal., 39 (2005), 487.  doi: 10.1051/m2an:2005020.  Google Scholar

[5]

B. Després and F. Lagoutière, Contact discontinuity capturing schemes for linear advection and compressible gas dynamics,, J. Sci. Comput., 16 (2001), 479.  doi: 10.1023/A:1013298408777.  Google Scholar

[6]

J. Douglas Jr. and T. Russell, Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures,, SIAM J. Numer. Anal., 19 (1982), 871.   Google Scholar

[7]

J. Douglas Jr., C.-S. Huang and F. Pereira, The modified method of characteristics with adjusted advection,, Numer. Math., 83 (1999), 353.  doi: 10.1007/s002110050453.  Google Scholar

[8]

G. Fourestey, "Simulation Numérique et Contrôle Optimal d'Interactions Fluide Incompressible/Structure par une Méthode de Lagrange-Galerkin d'Ordre 2,'', Ph.D Thesis, (2002).   Google Scholar

[9]

E. Godlewski and P.-A. Raviart, "Numerical Approximation of Hyperbolic Systems of Conservation Laws,'', Applied Mathematical Sciences, 118 (1996).   Google Scholar

[10]

F. Holly and A. Preissmann, Accurate calculation of transport in two dimensions,, J. Hydr. Div., 103 (1977), 1259.   Google Scholar

[11]

R. LeVeque, "Numerical Methods for Conservation Laws," Second edition,, Lectures in Mathematics ETH Zürich, (1992).   Google Scholar

[12]

J. Marsden and A. Chorin, "A Mathematical Introduction to Fluid Mechanics,", Springer-Verlag, (1979).   Google Scholar

[13]

S. Osher and J. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations,, J. Comput. Phys., 79 (1988), 12.  doi: 10.1016/0021-9991(88)90002-2.  Google Scholar

[14]

Y. Penel, "Étude Théorique et Numérique de la Déformation d'une Interface Séparant deux Fluides Non-Miscibles à Bas Nombre de Mach,", Ph.D Thesis, ().   Google Scholar

[15]

Y. Penel, S. Dellacherie and O. Lafitte, Global solutions to the 1D Abstract Bubble Vibration model,, Submitted., ().   Google Scholar

[16]

O. Pironneau, On the transport-diffusion algorithm and its applications to the Navier-Stokes equations,, Numer. Math., 38 (): 309.  doi: 10.1007/BF01396435.  Google Scholar

show all references

References:
[1]

C. Bardos, M. Bercovier and O. Pironneau, The vortex method with finite elements,, Math. Comp., 36 (1981), 119.  doi: 10.1090/S0025-5718-1981-0595046-3.  Google Scholar

[2]

F. Boyer and P. Fabrie, "Éléments d'Analyse pour l'Étude de Quelques Modèles d'Écoulements de Fluides Visqueux Incompressibles,'', Mathématiques & Applications (Berlin), 52 (2006).   Google Scholar

[3]

J. Burgers, "A Mathematical Model Illustrating the Theory of Turbulence,", edited by Richard von Mises and Theodore von Kármán, (1948), 171.  doi: 10.1016/S0065-2156(08)70100-5.  Google Scholar

[4]

S. Dellacherie, On a diphasic low Mach number system,, M2AN Math. Model. Numer. Anal., 39 (2005), 487.  doi: 10.1051/m2an:2005020.  Google Scholar

[5]

B. Després and F. Lagoutière, Contact discontinuity capturing schemes for linear advection and compressible gas dynamics,, J. Sci. Comput., 16 (2001), 479.  doi: 10.1023/A:1013298408777.  Google Scholar

[6]

J. Douglas Jr. and T. Russell, Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures,, SIAM J. Numer. Anal., 19 (1982), 871.   Google Scholar

[7]

J. Douglas Jr., C.-S. Huang and F. Pereira, The modified method of characteristics with adjusted advection,, Numer. Math., 83 (1999), 353.  doi: 10.1007/s002110050453.  Google Scholar

[8]

G. Fourestey, "Simulation Numérique et Contrôle Optimal d'Interactions Fluide Incompressible/Structure par une Méthode de Lagrange-Galerkin d'Ordre 2,'', Ph.D Thesis, (2002).   Google Scholar

[9]

E. Godlewski and P.-A. Raviart, "Numerical Approximation of Hyperbolic Systems of Conservation Laws,'', Applied Mathematical Sciences, 118 (1996).   Google Scholar

[10]

F. Holly and A. Preissmann, Accurate calculation of transport in two dimensions,, J. Hydr. Div., 103 (1977), 1259.   Google Scholar

[11]

R. LeVeque, "Numerical Methods for Conservation Laws," Second edition,, Lectures in Mathematics ETH Zürich, (1992).   Google Scholar

[12]

J. Marsden and A. Chorin, "A Mathematical Introduction to Fluid Mechanics,", Springer-Verlag, (1979).   Google Scholar

[13]

S. Osher and J. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations,, J. Comput. Phys., 79 (1988), 12.  doi: 10.1016/0021-9991(88)90002-2.  Google Scholar

[14]

Y. Penel, "Étude Théorique et Numérique de la Déformation d'une Interface Séparant deux Fluides Non-Miscibles à Bas Nombre de Mach,", Ph.D Thesis, ().   Google Scholar

[15]

Y. Penel, S. Dellacherie and O. Lafitte, Global solutions to the 1D Abstract Bubble Vibration model,, Submitted., ().   Google Scholar

[16]

O. Pironneau, On the transport-diffusion algorithm and its applications to the Navier-Stokes equations,, Numer. Math., 38 (): 309.  doi: 10.1007/BF01396435.  Google Scholar

[1]

Yones Esmaeelzade Aghdam, Hamid Safdari, Yaqub Azari, Hossein Jafari, Dumitru Baleanu. Numerical investigation of space fractional order diffusion equation by the Chebyshev collocation method of the fourth kind and compact finite difference scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020402

[2]

Xu Yang, François Golse, Zhongyi Huang, Shi Jin. Numerical study of a domain decomposition method for a two-scale linear transport equation. Networks & Heterogeneous Media, 2006, 1 (1) : 143-166. doi: 10.3934/nhm.2006.1.143

[3]

Alexandre Caboussat, Roland Glowinski. A Numerical Method for a Non-Smooth Advection-Diffusion Problem Arising in Sand Mechanics. Communications on Pure & Applied Analysis, 2009, 8 (1) : 161-178. doi: 10.3934/cpaa.2009.8.161

[4]

Helge Holden, Xavier Raynaud. A convergent numerical scheme for the Camassa--Holm equation based on multipeakons. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 505-523. doi: 10.3934/dcds.2006.14.505

[5]

Amy Allwright, Abdon Atangana. Augmented upwind numerical schemes for a fractional advection-dispersion equation in fractured groundwater systems. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 443-466. doi: 10.3934/dcdss.2020025

[6]

Wen Li, Song Wang, Volker Rehbock. A 2nd-order one-point numerical integration scheme for fractional ordinary differential equations. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 273-287. doi: 10.3934/naco.2017018

[7]

Zeyu Xia, Xiaofeng Yang. A second order accuracy in time, Fourier pseudo-spectral numerical scheme for "Good" Boussinesq equation. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3749-3763. doi: 10.3934/dcdsb.2020089

[8]

Armando Majorana. A numerical model of the Boltzmann equation related to the discontinuous Galerkin method. Kinetic & Related Models, 2011, 4 (1) : 139-151. doi: 10.3934/krm.2011.4.139

[9]

Roberto Camassa, Pao-Hsiung Chiu, Long Lee, W.-H. Sheu. A particle method and numerical study of a quasilinear partial differential equation. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1503-1515. doi: 10.3934/cpaa.2011.10.1503

[10]

Jaemin Shin, Yongho Choi, Junseok Kim. An unconditionally stable numerical method for the viscous Cahn--Hilliard equation. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1737-1747. doi: 10.3934/dcdsb.2014.19.1737

[11]

Faranak Rabiei, Fatin Abd Hamid, Zanariah Abd Majid, Fudziah Ismail. Numerical solutions of Volterra integro-differential equations using General Linear Method. Numerical Algebra, Control & Optimization, 2019, 9 (4) : 433-444. doi: 10.3934/naco.2019042

[12]

Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, , () : -. doi: 10.3934/era.2020095

[13]

Út V. Lê. Contraction-Galerkin method for a semi-linear wave equation. Communications on Pure & Applied Analysis, 2010, 9 (1) : 141-160. doi: 10.3934/cpaa.2010.9.141

[14]

Li Yang, Zeng Rong, Shouming Zhou, Chunlai Mu. Uniqueness of conservative solutions to the generalized Camassa-Holm equation via characteristics. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5205-5220. doi: 10.3934/dcds.2018230

[15]

Roberto Camassa. Characteristics and the initial value problem of a completely integrable shallow water equation. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 115-139. doi: 10.3934/dcdsb.2003.3.115

[16]

Alberto Bressan, Geng Chen, Qingtian Zhang. Uniqueness of conservative solutions to the Camassa-Holm equation via characteristics. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 25-42. doi: 10.3934/dcds.2015.35.25

[17]

Francesco C. De Vecchi, Andrea Romano, Stefania Ugolini. A symmetry-adapted numerical scheme for SDEs. Journal of Geometric Mechanics, 2019, 11 (3) : 325-359. doi: 10.3934/jgm.2019018

[18]

Jyoti Mishra. Analysis of the Fitzhugh Nagumo model with a new numerical scheme. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 781-795. doi: 10.3934/dcdss.2020044

[19]

Jianguo Huang, Sen Lin. A $ C^0P_2 $ time-stepping virtual element method for linear wave equations on polygonal meshes. Electronic Research Archive, 2020, 28 (2) : 911-933. doi: 10.3934/era.2020048

[20]

Tiexiang Li, Tsung-Ming Huang, Wen-Wei Lin, Jenn-Nan Wang. On the transmission eigenvalue problem for the acoustic equation with a negative index of refraction and a practical numerical reconstruction method. Inverse Problems & Imaging, 2018, 12 (4) : 1033-1054. doi: 10.3934/ipi.2018043

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]