June  2012, 5(3): 657-670. doi: 10.3934/dcdss.2012.5.657

Support properties of solutions to nonlinear parabolic equations with variable density in the hyperbolic space

1. 

Dipartimento di Matematica “G. Castelnuovo”, Università di Roma “La Sapienza”, P.le A. Moro 5, I-00185 Roma

Received  June 2010 Revised  August 2010 Published  October 2011

We consider the Cauchy problem for a class of nonlinear parabolic equations with variable density in the hyperbolic space, assuming that the initial datum has compact support. We provide simple conditions, involving the behaviour of the density at infinity, so that the support of every nonnegative solution is not compact at some positive time, or it remains compact for any positive time. These results extend to the case of the hyperbolic space those given in [8] for the Cauchy problem in $\mathbb{R}^n$.
Citation: Fabio Punzo. Support properties of solutions to nonlinear parabolic equations with variable density in the hyperbolic space. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 657-670. doi: 10.3934/dcdss.2012.5.657
References:
[1]

R. Benedetti and C. Petronio, "Lectures on Hyperbolic Geometry,", Universitext, (1992).  doi: 10.1007/978-3-642-58158-8.  Google Scholar

[2]

I. Birindelli and R. Mazzeo, Symmetry for solutions of two phase semilinear elliptic equations on hyperbolic space,, Indiana Univ. Math. J., 58 (2009), 2347.  doi: 10.1512/iumj.2009.58.3714.  Google Scholar

[3]

E. B. Davies, "Heat Kernel and Spectral Theory,", Cambridge Tracts in Mathematics, 92 (1989).   Google Scholar

[4]

D. Eidus and S. Kamin, The filtration equation in a class of functions decreasing at infinity,, Proc. Amer. Math. Soc., 120 (1994), 825.  doi: 10.1090/S0002-9939-1994-1169025-2.  Google Scholar

[5]

A. Grigor'yan and M. Noguchi, The heat kernel on hyperbolic space,, Bull. Lond. Math. Soc., 30 (1998), 643.  doi: 10.1112/S0024609398004780.  Google Scholar

[6]

A. Grigor'yan, Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds,, Bull. Amer. Math. Soc. (N.S.), 36 (1999), 135.   Google Scholar

[7]

A. Grigor'yan, Heat kernels on weighted manifolds and applications,, in, 398 (2006), 93.   Google Scholar

[8]

S. Kamin and R. Kersner, Disappearance of interfaces in finite time,, Meccanica, 28 (1993), 117.  doi: 10.1007/BF01020323.  Google Scholar

[9]

S. Kamin, R. Kersner and A. Tesei, On the Cauchy problem for a class of parabolic equations with variable density,, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 9 (1998), 279.   Google Scholar

[10]

S. Kamin and P. Rosenau, Nonlinear diffusion in a finite mass medium,, Comm. Pure Appl. Math., 35 (1982), 113.   Google Scholar

[11]

S. Kumaresan and J. Prajapat, Serrin's result for hyperbolic space and sphere,, Duke Math. J., 91 (1998), 17.  doi: 10.1215/S0012-7094-98-09102-5.  Google Scholar

[12]

M. A. Pozio and A. Tesei, On the uniqueness of bounded soutions to singular parabolic problems,, Discr. Cont. Dyn. Syst., 13 (2005), 117.  doi: 10.3934/dcds.2005.13.117.  Google Scholar

[13]

F. Punzo, On the Cauchy problem for nonlinear parabolic equations with variable density,, J. Evol. Equations, 9 (2009), 429.  doi: 10.1007/s00028-009-0018-6.  Google Scholar

[14]

F. Punzo, Well-posedness of the Cauchy problem for nonlinear parabolic equations with variable density in the hyperbolic space,, Nonlin. Diff. Eq. Appl., ().   Google Scholar

[15]

G. Reyes and J. L. Vazquez, The Cauchy problem for the inhomogeneous porous medium equation,, Netw. Heterog. Media, 1 (2006), 337.  doi: 10.3934/nhm.2006.1.337.  Google Scholar

show all references

References:
[1]

R. Benedetti and C. Petronio, "Lectures on Hyperbolic Geometry,", Universitext, (1992).  doi: 10.1007/978-3-642-58158-8.  Google Scholar

[2]

I. Birindelli and R. Mazzeo, Symmetry for solutions of two phase semilinear elliptic equations on hyperbolic space,, Indiana Univ. Math. J., 58 (2009), 2347.  doi: 10.1512/iumj.2009.58.3714.  Google Scholar

[3]

E. B. Davies, "Heat Kernel and Spectral Theory,", Cambridge Tracts in Mathematics, 92 (1989).   Google Scholar

[4]

D. Eidus and S. Kamin, The filtration equation in a class of functions decreasing at infinity,, Proc. Amer. Math. Soc., 120 (1994), 825.  doi: 10.1090/S0002-9939-1994-1169025-2.  Google Scholar

[5]

A. Grigor'yan and M. Noguchi, The heat kernel on hyperbolic space,, Bull. Lond. Math. Soc., 30 (1998), 643.  doi: 10.1112/S0024609398004780.  Google Scholar

[6]

A. Grigor'yan, Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds,, Bull. Amer. Math. Soc. (N.S.), 36 (1999), 135.   Google Scholar

[7]

A. Grigor'yan, Heat kernels on weighted manifolds and applications,, in, 398 (2006), 93.   Google Scholar

[8]

S. Kamin and R. Kersner, Disappearance of interfaces in finite time,, Meccanica, 28 (1993), 117.  doi: 10.1007/BF01020323.  Google Scholar

[9]

S. Kamin, R. Kersner and A. Tesei, On the Cauchy problem for a class of parabolic equations with variable density,, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 9 (1998), 279.   Google Scholar

[10]

S. Kamin and P. Rosenau, Nonlinear diffusion in a finite mass medium,, Comm. Pure Appl. Math., 35 (1982), 113.   Google Scholar

[11]

S. Kumaresan and J. Prajapat, Serrin's result for hyperbolic space and sphere,, Duke Math. J., 91 (1998), 17.  doi: 10.1215/S0012-7094-98-09102-5.  Google Scholar

[12]

M. A. Pozio and A. Tesei, On the uniqueness of bounded soutions to singular parabolic problems,, Discr. Cont. Dyn. Syst., 13 (2005), 117.  doi: 10.3934/dcds.2005.13.117.  Google Scholar

[13]

F. Punzo, On the Cauchy problem for nonlinear parabolic equations with variable density,, J. Evol. Equations, 9 (2009), 429.  doi: 10.1007/s00028-009-0018-6.  Google Scholar

[14]

F. Punzo, Well-posedness of the Cauchy problem for nonlinear parabolic equations with variable density in the hyperbolic space,, Nonlin. Diff. Eq. Appl., ().   Google Scholar

[15]

G. Reyes and J. L. Vazquez, The Cauchy problem for the inhomogeneous porous medium equation,, Netw. Heterog. Media, 1 (2006), 337.  doi: 10.3934/nhm.2006.1.337.  Google Scholar

[1]

Yoshitsugu Kabeya. Eigenvalues of the Laplace-Beltrami operator under the homogeneous Neumann condition on a large zonal domain in the unit sphere. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3529-3559. doi: 10.3934/dcds.2020040

[2]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[3]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[4]

Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020293

[5]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[6]

Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037

[7]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[8]

Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021002

[9]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[10]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[11]

Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018

[12]

Tomáš Smejkal, Jiří Mikyška, Jaromír Kukal. Comparison of modern heuristics on solving the phase stability testing problem. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1161-1180. doi: 10.3934/dcdss.2020227

[13]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[14]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036

[15]

Ole Løseth Elvetun, Bjørn Fredrik Nielsen. A regularization operator for source identification for elliptic PDEs. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021006

[16]

Wenqin Zhang, Zhengchun Zhou, Udaya Parampalli, Vladimir Sidorenko. Capacity-achieving private information retrieval scheme with a smaller sub-packetization. Advances in Mathematics of Communications, 2021, 15 (2) : 347-363. doi: 10.3934/amc.2020070

[17]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[18]

Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185

[19]

Qiang Long, Xue Wu, Changzhi Wu. Non-dominated sorting methods for multi-objective optimization: Review and numerical comparison. Journal of Industrial & Management Optimization, 2021, 17 (2) : 1001-1023. doi: 10.3934/jimo.2020009

[20]

Petr Čoupek, María J. Garrido-Atienza. Bilinear equations in Hilbert space driven by paths of low regularity. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 121-154. doi: 10.3934/dcdsb.2020230

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (37)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]