Citation: |
[1] |
R. Benedetti and C. Petronio, "Lectures on Hyperbolic Geometry," Universitext, Springer-Verlag, Berlin, 1992.doi: 10.1007/978-3-642-58158-8. |
[2] |
I. Birindelli and R. Mazzeo, Symmetry for solutions of two phase semilinear elliptic equations on hyperbolic space, Indiana Univ. Math. J., 58 (2009), 2347-2368.doi: 10.1512/iumj.2009.58.3714. |
[3] |
E. B. Davies, "Heat Kernel and Spectral Theory," Cambridge Tracts in Mathematics, 92, Cambridge University Press, Cambridge, 1989. |
[4] |
D. Eidus and S. Kamin, The filtration equation in a class of functions decreasing at infinity, Proc. Amer. Math. Soc., 120 (1994), 825-830.doi: 10.1090/S0002-9939-1994-1169025-2. |
[5] |
A. Grigor'yan and M. Noguchi, The heat kernel on hyperbolic space, Bull. Lond. Math. Soc., 30 (1998), 643-650.doi: 10.1112/S0024609398004780. |
[6] |
A. Grigor'yan, Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds, Bull. Amer. Math. Soc. (N.S.), 36 (1999), 135-249. |
[7] |
A. Grigor'yan, Heat kernels on weighted manifolds and applications, in "The Ubiquitous Heat Kernel," Cont. Math., 398, Amer. Math. Soc., Providence, RI, (2006), 93-191. |
[8] |
S. Kamin and R. Kersner, Disappearance of interfaces in finite time, Meccanica, 28 (1993), 117-120.doi: 10.1007/BF01020323. |
[9] |
S. Kamin, R. Kersner and A. Tesei, On the Cauchy problem for a class of parabolic equations with variable density, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 9 (1998), 279-298. |
[10] |
S. Kamin and P. Rosenau, Nonlinear diffusion in a finite mass medium, Comm. Pure Appl. Math., 35 (1982), 113-127. |
[11] |
S. Kumaresan and J. Prajapat, Serrin's result for hyperbolic space and sphere, Duke Math. J., 91 (1998), 17-28.doi: 10.1215/S0012-7094-98-09102-5. |
[12] |
M. A. Pozio and A. Tesei, On the uniqueness of bounded soutions to singular parabolic problems, Discr. Cont. Dyn. Syst., 13 (2005), 117-137.doi: 10.3934/dcds.2005.13.117. |
[13] |
F. Punzo, On the Cauchy problem for nonlinear parabolic equations with variable density, J. Evol. Equations, 9 (2009), 429-447.doi: 10.1007/s00028-009-0018-6. |
[14] |
F. Punzo, Well-posedness of the Cauchy problem for nonlinear parabolic equations with variable density in the hyperbolic space, Nonlin. Diff. Eq. Appl., to appear. |
[15] |
G. Reyes and J. L. Vazquez, The Cauchy problem for the inhomogeneous porous medium equation, Netw. Heterog. Media, 1 (2006), 337-351.doi: 10.3934/nhm.2006.1.337. |