June  2012, 5(3): 671-681. doi: 10.3934/dcdss.2012.5.671

Blow-up rate of solutions of parabolic poblems with nonlinear boundary conditions

1. 

Department of Applied Mathematics and Statistics, Comenius University, Mlynská dolina, 84248 Bratislava

2. 

Université Paris 13, CNRS UMR 7539, Laboratoire Analyse, Géométrie et Applications, 99, avenue J.-B. Clément, 93430 Villetaneuse

Received  September 2010 Revised  October 2010 Published  October 2011

We review known and prove new results on blow-up rate of solutions of parabolic problems with nonlinear boundary conditions. We also compare these results and methods of their proofs with corresponding results and methods for the nonlinear heat equation.
Citation: Pavol Quittner, Philippe Souplet. Blow-up rate of solutions of parabolic poblems with nonlinear boundary conditions. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 671-681. doi: 10.3934/dcdss.2012.5.671
References:
[1]

H. Amann, Linear parabolic problems involving measures,, Rev. R. Acad. Cien. Exactas Fís. Nat. Serie A. Mat., 95 (2001), 85.   Google Scholar

[2]

J. M. Arrieta, On boundedness of solutions of reaction-diffusion equations with nonlinear boundary conditions,, Proc. Amer. Math. Soc., 136 (2008), 151.  doi: 10.1090/S0002-9939-07-08980-0.  Google Scholar

[3]

F. Andreu, J. M. Mazón, J. Toledo and J. D. Rossi, Porous medium equation with absorption and a nonlinear boundary condition,, Nonlinear Analysis, 49 (2002), 541.  doi: 10.1016/S0362-546X(01)00122-5.  Google Scholar

[4]

M.-F. Bidaut-Véron, Initial blow-up for the solutions of a semilinear parabolic equation with source term,, in, (1998), 189.   Google Scholar

[5]

T. Cazenave and P.-L. Lions, Solutions globales d'équations de la chaleur semi linéaires,, Comm. Partial Differential Equations, 9 (1984), 955.   Google Scholar

[6]

M. Chipot, M. Chlebík, M. Fila and I. Shafrir, Existence of positive solutions of a semilinear elliptic equation in $\R^n_+$ with a nonlinear boundary condition,, J. Math. Anal. Appl., 223 (1998), 429.  doi: 10.1006/jmaa.1998.5958.  Google Scholar

[7]

M. Chipot, M. Fila and P. Quittner, Stationary solutions, blow up and convergence to stationary solutions for semilinear parabolic equations with nonlinear boundary conditions,, Acta Math. Univ. Comenianae (N.S.), 60 (1991), 35.   Google Scholar

[8]

M. Chipot, I. Shafrir and M. Fila, On the solutions to some elliptic equations with nonlinear Neumann boundary conditions,, Advances Differ. Equations, 1 (1996), 91.   Google Scholar

[9]

M. Chipot and P. Quittner, Equilibria, connecting orbits and a priori bounds for semilinear parabolic equations with nonlinear boundary conditions,, J. Dynam. Differential Equations, 16 (2004), 91.  doi: 10.1023/B:JODY.0000041282.14930.7a.  Google Scholar

[10]

M. Chlebík and M. Fila, On the blow-up rate for the heat equation with a nonlinear boundary condition,, Math. Methods Appl. Sci., 23 (2000), 1323.  doi: 10.1002/1099-1476(200010)23:15<1323::AID-MMA167>3.0.CO;2-W.  Google Scholar

[11]

K. Deng, M. Fila and H. A. Levine, On critical exponents for a system of heat equations coupled in the boundary conditions,, Acta Math. Univ. Comenianae (N.S.), 63 (1994), 169.   Google Scholar

[12]

M. Fila, J. Filo and G. M. Lieberman, Blow-up on the boundary for the heat equation,, Calc. Var. Partial Differential Equations, 10 (2000), 85.   Google Scholar

[13]

M. Fila and J.-S. Guo, Complete blow-up and incomplete quenching for the heat equation with a nonlinear boundary condition,, Nonlinear Analysis, 48 (2002), 995.  doi: 10.1016/S0362-546X(00)00229-7.  Google Scholar

[14]

M. Fila and P. Quittner, The blow-up rate for the heat equation with a nonlinear boundary condition,, Math. Methods Appl. Sci., 14 (1991), 197.  doi: 10.1002/mma.1670140304.  Google Scholar

[15]

M. Fila and Ph. Souplet, The blow-up rate for semilinear parabolic problems on general domains,, NoDEA Nonlinear Differential Equations Appl., 8 (2001), 473.  doi: 10.1007/PL00001459.  Google Scholar

[16]

M. Fila, Ph. Souplet and F. B. Weissler, Linear and nonlinear heat equations in $L^p_\delta$ spaces and universal bounds for global solutions,, Math. Ann., 320 (2001), 87.  doi: 10.1007/PL00004471.  Google Scholar

[17]

A. Friedman and B. McLeod, Blow-up of positive solutions of semilinear heat equations,, Indiana Univ. Math. J., 34 (1985), 425.  doi: 10.1512/iumj.1985.34.34025.  Google Scholar

[18]

V. A. Galaktionov and H. A. Levine, On critical Fujita exponents for heat equations with nonlinear flux conditions on the boundary,, Israel J. Math., 94 (1996), 125.  doi: 10.1007/BF02762700.  Google Scholar

[19]

Y. Giga, A bound for global solutions of semilinear heat equations,, Comm. Math. Phys., 103 (1986), 415.  doi: 10.1007/BF01211756.  Google Scholar

[20]

Y. Giga and R. V. Kohn, Characterizing blowup using similarity variables,, Indiana Univ. Math. J., 36 (1987), 1.  doi: 10.1512/iumj.1987.36.36001.  Google Scholar

[21]

Y. Giga, S. Matsui and S. Sasayama, Blow up rate for semilinear heat equation with subcritical nonlinearity,, Indiana Univ. Math. J., 53 (2004), 483.  doi: 10.1512/iumj.2004.53.2401.  Google Scholar

[22]

Y. Giga, S. Matsui and S. Sasayama, On blow-up rate for sign-changing solutions in a convex domain,, Math. Methods Appl. Sc., 27 (2004), 1771.  doi: 10.1002/mma.562.  Google Scholar

[23]

B. Hu, Nonexistence of a positive solution of the Laplace equation with a nonlinear boundary condition,, Differ. Integral Equations, 7 (1994), 301.   Google Scholar

[24]

B. Hu, Nondegeneracy and single-point-blowup for solution of the heat equation with a nonlinear boundary condition,, J. Math. Sci. Univ. Tokyo, 1 (1994), 251.   Google Scholar

[25]

B. Hu, Remarks on the blowup estimate for solutions of the heat equation with a nonlinear boundary condition,, Differ. Integral Equations, 9 (1996), 891.   Google Scholar

[26]

B. Hu and H.-M. Yin, The profile near blowup time for solution of the heat equation with a nonlinear boundary condition,, Trans. Amer. Math. Soc., 346 (1994), 117.  doi: 10.2307/2154944.  Google Scholar

[27]

Y.-Y. Li and L. Zhang, Liouville-type theorems and Harnack-type inequalities for semilinear elliptic equations,, J. Anal. Math., 90 (2003), 27.  doi: 10.1007/BF02786551.  Google Scholar

[28]

P. Poláčik and P. Quittner, A Liouville-type theorem and the decay of radial solutions of a semilinear heat equation,, Nonlinear Analysis, 64 (2006), 1679.  doi: 10.1016/j.na.2005.07.016.  Google Scholar

[29]

P. Poláčik, P. Quittner and Ph. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems. Part II: Parabolic equations,, Indiana Univ. Math. J., 56 (2007), 879.  doi: 10.1512/iumj.2007.56.2911.  Google Scholar

[30]

F. Quirós, J. D. Rossi and J. L. Vázquez, Complete blow-up and thermal avalanche for heat equations with nonlinear boundary conditions,, Comm. Partial Differ. Equations, 27 (2002), 395.   Google Scholar

[31]

P. Quittner, A priori bounds for global solutions of a semilinear parabolic problem,, Acta Math. Univ. Comenian. (N.S.), 68 (1999), 195.   Google Scholar

[32]

P. Quittner, Universal bound for global positive solutions of a superlinear parabolic problem,, Math. Ann., 320 (2001), 299.  doi: 10.1007/PL00004475.  Google Scholar

[33]

P. Quittner and A. Rodríguez-Bernal, Complete and energy blow-up in parabolic problems with nonlinear boundary conditions,, Nonlinear Analysis, 62 (2005), 863.  doi: 10.1016/j.na.2005.03.099.  Google Scholar

[34]

P. Quittner and Ph. Souplet, Bounds of global solutions of parabolic problems with nonlinear boundary conditions,, Indiana Univ. Math. J., 52 (2003), 875.  doi: 10.1512/iumj.2003.52.2353.  Google Scholar

[35]

P. Quittner and Ph. Souplet, "Superlinear Parabolic Problems. Blow-Up, Global Existence and Steady States,", Birkhäuser Advanced Texts: Basler Lehrbücher, (2007).   Google Scholar

[36]

P. Quittner and Ph. Souplet, Parabolic Liouville-type theorems via their elliptic counterparts,, Proc. 8th AIMS Intern. Conf., (2010).   Google Scholar

[37]

P. Quittner, Ph. Souplet and M. Winkler, Initial blow-up rates and universal bounds for nonlinear heat equations,, J. Differential Equations, 196 (2004), 316.  doi: 10.1016/j.jde.2003.10.007.  Google Scholar

[38]

A. Rodríguez-Bernal and A. Tajdine, Nonlinear balance for reaction-diffusion equations under nonlinear boundary conditions: Dissipativity and blow-up,, J. Differ. Equations, 169 (2001), 332.  doi: 10.1006/jdeq.2000.3903.  Google Scholar

[39]

F. B. Weissler, Single point blow-up for a semilinear initial value problem,, J. Differential Equations, 55 (1984), 204.  doi: 10.1016/0022-0396(84)90081-0.  Google Scholar

[40]

F. B. Weissler, An $L^\infty$ blow-up estimate for a nonlinear heat equation,, Comm. Pure Appl. Math., 38 (1985), 291.  doi: 10.1002/cpa.3160380303.  Google Scholar

show all references

References:
[1]

H. Amann, Linear parabolic problems involving measures,, Rev. R. Acad. Cien. Exactas Fís. Nat. Serie A. Mat., 95 (2001), 85.   Google Scholar

[2]

J. M. Arrieta, On boundedness of solutions of reaction-diffusion equations with nonlinear boundary conditions,, Proc. Amer. Math. Soc., 136 (2008), 151.  doi: 10.1090/S0002-9939-07-08980-0.  Google Scholar

[3]

F. Andreu, J. M. Mazón, J. Toledo and J. D. Rossi, Porous medium equation with absorption and a nonlinear boundary condition,, Nonlinear Analysis, 49 (2002), 541.  doi: 10.1016/S0362-546X(01)00122-5.  Google Scholar

[4]

M.-F. Bidaut-Véron, Initial blow-up for the solutions of a semilinear parabolic equation with source term,, in, (1998), 189.   Google Scholar

[5]

T. Cazenave and P.-L. Lions, Solutions globales d'équations de la chaleur semi linéaires,, Comm. Partial Differential Equations, 9 (1984), 955.   Google Scholar

[6]

M. Chipot, M. Chlebík, M. Fila and I. Shafrir, Existence of positive solutions of a semilinear elliptic equation in $\R^n_+$ with a nonlinear boundary condition,, J. Math. Anal. Appl., 223 (1998), 429.  doi: 10.1006/jmaa.1998.5958.  Google Scholar

[7]

M. Chipot, M. Fila and P. Quittner, Stationary solutions, blow up and convergence to stationary solutions for semilinear parabolic equations with nonlinear boundary conditions,, Acta Math. Univ. Comenianae (N.S.), 60 (1991), 35.   Google Scholar

[8]

M. Chipot, I. Shafrir and M. Fila, On the solutions to some elliptic equations with nonlinear Neumann boundary conditions,, Advances Differ. Equations, 1 (1996), 91.   Google Scholar

[9]

M. Chipot and P. Quittner, Equilibria, connecting orbits and a priori bounds for semilinear parabolic equations with nonlinear boundary conditions,, J. Dynam. Differential Equations, 16 (2004), 91.  doi: 10.1023/B:JODY.0000041282.14930.7a.  Google Scholar

[10]

M. Chlebík and M. Fila, On the blow-up rate for the heat equation with a nonlinear boundary condition,, Math. Methods Appl. Sci., 23 (2000), 1323.  doi: 10.1002/1099-1476(200010)23:15<1323::AID-MMA167>3.0.CO;2-W.  Google Scholar

[11]

K. Deng, M. Fila and H. A. Levine, On critical exponents for a system of heat equations coupled in the boundary conditions,, Acta Math. Univ. Comenianae (N.S.), 63 (1994), 169.   Google Scholar

[12]

M. Fila, J. Filo and G. M. Lieberman, Blow-up on the boundary for the heat equation,, Calc. Var. Partial Differential Equations, 10 (2000), 85.   Google Scholar

[13]

M. Fila and J.-S. Guo, Complete blow-up and incomplete quenching for the heat equation with a nonlinear boundary condition,, Nonlinear Analysis, 48 (2002), 995.  doi: 10.1016/S0362-546X(00)00229-7.  Google Scholar

[14]

M. Fila and P. Quittner, The blow-up rate for the heat equation with a nonlinear boundary condition,, Math. Methods Appl. Sci., 14 (1991), 197.  doi: 10.1002/mma.1670140304.  Google Scholar

[15]

M. Fila and Ph. Souplet, The blow-up rate for semilinear parabolic problems on general domains,, NoDEA Nonlinear Differential Equations Appl., 8 (2001), 473.  doi: 10.1007/PL00001459.  Google Scholar

[16]

M. Fila, Ph. Souplet and F. B. Weissler, Linear and nonlinear heat equations in $L^p_\delta$ spaces and universal bounds for global solutions,, Math. Ann., 320 (2001), 87.  doi: 10.1007/PL00004471.  Google Scholar

[17]

A. Friedman and B. McLeod, Blow-up of positive solutions of semilinear heat equations,, Indiana Univ. Math. J., 34 (1985), 425.  doi: 10.1512/iumj.1985.34.34025.  Google Scholar

[18]

V. A. Galaktionov and H. A. Levine, On critical Fujita exponents for heat equations with nonlinear flux conditions on the boundary,, Israel J. Math., 94 (1996), 125.  doi: 10.1007/BF02762700.  Google Scholar

[19]

Y. Giga, A bound for global solutions of semilinear heat equations,, Comm. Math. Phys., 103 (1986), 415.  doi: 10.1007/BF01211756.  Google Scholar

[20]

Y. Giga and R. V. Kohn, Characterizing blowup using similarity variables,, Indiana Univ. Math. J., 36 (1987), 1.  doi: 10.1512/iumj.1987.36.36001.  Google Scholar

[21]

Y. Giga, S. Matsui and S. Sasayama, Blow up rate for semilinear heat equation with subcritical nonlinearity,, Indiana Univ. Math. J., 53 (2004), 483.  doi: 10.1512/iumj.2004.53.2401.  Google Scholar

[22]

Y. Giga, S. Matsui and S. Sasayama, On blow-up rate for sign-changing solutions in a convex domain,, Math. Methods Appl. Sc., 27 (2004), 1771.  doi: 10.1002/mma.562.  Google Scholar

[23]

B. Hu, Nonexistence of a positive solution of the Laplace equation with a nonlinear boundary condition,, Differ. Integral Equations, 7 (1994), 301.   Google Scholar

[24]

B. Hu, Nondegeneracy and single-point-blowup for solution of the heat equation with a nonlinear boundary condition,, J. Math. Sci. Univ. Tokyo, 1 (1994), 251.   Google Scholar

[25]

B. Hu, Remarks on the blowup estimate for solutions of the heat equation with a nonlinear boundary condition,, Differ. Integral Equations, 9 (1996), 891.   Google Scholar

[26]

B. Hu and H.-M. Yin, The profile near blowup time for solution of the heat equation with a nonlinear boundary condition,, Trans. Amer. Math. Soc., 346 (1994), 117.  doi: 10.2307/2154944.  Google Scholar

[27]

Y.-Y. Li and L. Zhang, Liouville-type theorems and Harnack-type inequalities for semilinear elliptic equations,, J. Anal. Math., 90 (2003), 27.  doi: 10.1007/BF02786551.  Google Scholar

[28]

P. Poláčik and P. Quittner, A Liouville-type theorem and the decay of radial solutions of a semilinear heat equation,, Nonlinear Analysis, 64 (2006), 1679.  doi: 10.1016/j.na.2005.07.016.  Google Scholar

[29]

P. Poláčik, P. Quittner and Ph. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems. Part II: Parabolic equations,, Indiana Univ. Math. J., 56 (2007), 879.  doi: 10.1512/iumj.2007.56.2911.  Google Scholar

[30]

F. Quirós, J. D. Rossi and J. L. Vázquez, Complete blow-up and thermal avalanche for heat equations with nonlinear boundary conditions,, Comm. Partial Differ. Equations, 27 (2002), 395.   Google Scholar

[31]

P. Quittner, A priori bounds for global solutions of a semilinear parabolic problem,, Acta Math. Univ. Comenian. (N.S.), 68 (1999), 195.   Google Scholar

[32]

P. Quittner, Universal bound for global positive solutions of a superlinear parabolic problem,, Math. Ann., 320 (2001), 299.  doi: 10.1007/PL00004475.  Google Scholar

[33]

P. Quittner and A. Rodríguez-Bernal, Complete and energy blow-up in parabolic problems with nonlinear boundary conditions,, Nonlinear Analysis, 62 (2005), 863.  doi: 10.1016/j.na.2005.03.099.  Google Scholar

[34]

P. Quittner and Ph. Souplet, Bounds of global solutions of parabolic problems with nonlinear boundary conditions,, Indiana Univ. Math. J., 52 (2003), 875.  doi: 10.1512/iumj.2003.52.2353.  Google Scholar

[35]

P. Quittner and Ph. Souplet, "Superlinear Parabolic Problems. Blow-Up, Global Existence and Steady States,", Birkhäuser Advanced Texts: Basler Lehrbücher, (2007).   Google Scholar

[36]

P. Quittner and Ph. Souplet, Parabolic Liouville-type theorems via their elliptic counterparts,, Proc. 8th AIMS Intern. Conf., (2010).   Google Scholar

[37]

P. Quittner, Ph. Souplet and M. Winkler, Initial blow-up rates and universal bounds for nonlinear heat equations,, J. Differential Equations, 196 (2004), 316.  doi: 10.1016/j.jde.2003.10.007.  Google Scholar

[38]

A. Rodríguez-Bernal and A. Tajdine, Nonlinear balance for reaction-diffusion equations under nonlinear boundary conditions: Dissipativity and blow-up,, J. Differ. Equations, 169 (2001), 332.  doi: 10.1006/jdeq.2000.3903.  Google Scholar

[39]

F. B. Weissler, Single point blow-up for a semilinear initial value problem,, J. Differential Equations, 55 (1984), 204.  doi: 10.1016/0022-0396(84)90081-0.  Google Scholar

[40]

F. B. Weissler, An $L^\infty$ blow-up estimate for a nonlinear heat equation,, Comm. Pure Appl. Math., 38 (1985), 291.  doi: 10.1002/cpa.3160380303.  Google Scholar

[1]

Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318

[2]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[3]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[4]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[5]

Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388

[6]

Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391

[7]

Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039

[8]

Kuntal Bhandari, Franck Boyer. Boundary null-controllability of coupled parabolic systems with Robin conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 61-102. doi: 10.3934/eect.2020052

[9]

Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052

[10]

Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020109

[11]

Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362

[12]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[13]

Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226

[14]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

[15]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[16]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[17]

Roland Schnaubelt, Martin Spitz. Local wellposedness of quasilinear Maxwell equations with absorbing boundary conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 155-198. doi: 10.3934/eect.2020061

[18]

Qianqian Hou, Tai-Chia Lin, Zhi-An Wang. On a singularly perturbed semi-linear problem with Robin boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 401-414. doi: 10.3934/dcdsb.2020083

[19]

Wenrui Hao, King-Yeung Lam, Yuan Lou. Ecological and evolutionary dynamics in advective environments: Critical domain size and boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 367-400. doi: 10.3934/dcdsb.2020283

[20]

Franck Davhys Reval Langa, Morgan Pierre. A doubly splitting scheme for the Caginalp system with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 653-676. doi: 10.3934/dcdss.2020353

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (51)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]