    June  2012, 5(3): 683-706. doi: 10.3934/dcdss.2012.5.683

## A bifurcation for a generalized Burgers' equation in dimension one

 1 LMPA Joseph Liouville (ULCO) FR 2956 CNRS, Université Lille Nord de France, 50 rue F. Buisson, B.P. 699, F-62228 Calais Cedex, France

Received  August 2010 Revised  April 2011 Published  October 2011

We consider the generalized Burgers' equation \begin{eqnarray*} \left\{ \begin{array}{ll} \partial_t u = \partial_x^2u - u \partial_x u + u^p - \lambda u &\textrm{ in } \overline{\Omega} \textrm{ for } t>0, \\ \mathcal{B}(u)=0 & \textrm{ on } \partial \Omega \textrm{ for } t>0, \\ u(\cdot,0) = \varphi \geq 0 & \textrm{ in } \overline{\Omega}, \end{array} \right. \end{eqnarray*} with $p>1$, $\lambda \in \mathbb{R}$, $\Omega$ a subdomain of $\mathbb{R}$, and where $\mathcal{B}(u)=0$ denotes some boundary conditions. First, using some phase plane arguments, we study the existence of stationary solutions under the Dirichlet or the Neumann boundary conditions and prove a bifurcation depending on the parameter $\lambda$. Then, we compare positive solutions of the parabolic equation with appropriate stationary solutions to prove that global existence can occur when $\mathcal{B}(u)=0$ stands for the Dirichlet, the Neumann or the dissipative dynamical boundary conditions $\sigma \partial_t u + \partial _\nu u=0$. Finally, for many boundary conditions, global existence and blow up phenomena for solutions of the nonlinear parabolic problem in an unbounded domain $\Omega$ are investigated by using some standard super-solutions and some weighted $L^1-$norms.
Citation: Jean-François Rault. A bifurcation for a generalized Burgers' equation in dimension one. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 683-706. doi: 10.3934/dcdss.2012.5.683
##### References:
  H. Amann, "Ordinary Differential Equations. An Introduction to Nonlinear Analysis,", Translated from the German by Gerhard Metzen, 13 (1990). Google Scholar  C. Bandle, J. von Below and W. Reichel, Parabolic problems with dynamical boundary conditions: Eigenvalue expansions and blow up,, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Math. Appl., 17 (2006), 35. Google Scholar  J. von Below and C. De Coster, A qualitative theory for parabolic problems under dynamical boundary conditions,, Journal of Inequalities and Applications, 5 (2000), 467.  doi: 10.1155/S1025583400000266.  Google Scholar  J. von Below and S. Nicaise, Dynamical interface transition in ramified media with diffusion,, Comm. Partial Differential Equations, 21 (1996), 255. Google Scholar  J. von Below and G. Pincet Mailly, Blow up for reaction diffusion equations under dynamical boundary conditions,, Communications in Partial Differential Equations, 28 (2003), 223.  doi: 10.1081/PDE-120019380.  Google Scholar  J. von Below and G. Pincet Mailly, Blow Up for some nonlinear parabolic problems with convection under dynamical boundary conditions,, in, 2007 (): 1031. Google Scholar  J. Escher, Quasilinear parabolic systems with dynamical boundary conditions,, Comm. Partial Differential Equations, 18 (1993), 1309. Google Scholar  J.-F. Rault, Phénomène d'Explosion et Existence Globale pour Quelques Problèmes Paraboliques sous les Conditions au Bord Dynamiques,, Thèse Doctorale à l'Université du Littoral Côte d'Opale, (2010).   Google Scholar

show all references

##### References:
  H. Amann, "Ordinary Differential Equations. An Introduction to Nonlinear Analysis,", Translated from the German by Gerhard Metzen, 13 (1990). Google Scholar  C. Bandle, J. von Below and W. Reichel, Parabolic problems with dynamical boundary conditions: Eigenvalue expansions and blow up,, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Math. Appl., 17 (2006), 35. Google Scholar  J. von Below and C. De Coster, A qualitative theory for parabolic problems under dynamical boundary conditions,, Journal of Inequalities and Applications, 5 (2000), 467.  doi: 10.1155/S1025583400000266.  Google Scholar  J. von Below and S. Nicaise, Dynamical interface transition in ramified media with diffusion,, Comm. Partial Differential Equations, 21 (1996), 255. Google Scholar  J. von Below and G. Pincet Mailly, Blow up for reaction diffusion equations under dynamical boundary conditions,, Communications in Partial Differential Equations, 28 (2003), 223.  doi: 10.1081/PDE-120019380.  Google Scholar  J. von Below and G. Pincet Mailly, Blow Up for some nonlinear parabolic problems with convection under dynamical boundary conditions,, in, 2007 (): 1031. Google Scholar  J. Escher, Quasilinear parabolic systems with dynamical boundary conditions,, Comm. Partial Differential Equations, 18 (1993), 1309. Google Scholar  J.-F. Rault, Phénomène d'Explosion et Existence Globale pour Quelques Problèmes Paraboliques sous les Conditions au Bord Dynamiques,, Thèse Doctorale à l'Université du Littoral Côte d'Opale, (2010).   Google Scholar
  Alberto Bressan, Massimo Fonte. On the blow-up for a discrete Boltzmann equation in the plane. Discrete & Continuous Dynamical Systems - A, 2005, 13 (1) : 1-12. doi: 10.3934/dcds.2005.13.1  Anthony Suen. Existence and a blow-up criterion of solution to the 3D compressible Navier-Stokes-Poisson equations with finite energy. Discrete & Continuous Dynamical Systems - A, 2020, 40 (3) : 1775-1798. doi: 10.3934/dcds.2020093  Long Wei, Zhijun Qiao, Yang Wang, Shouming Zhou. Conserved quantities, global existence and blow-up for a generalized CH equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1733-1748. doi: 10.3934/dcds.2017072  Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control & Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119  Shota Sato. Blow-up at space infinity of a solution with a moving singularity for a semilinear parabolic equation. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1225-1237. doi: 10.3934/cpaa.2011.10.1225  Tetsuya Ishiwata, Shigetoshi Yazaki. A fast blow-up solution and degenerate pinching arising in an anisotropic crystalline motion. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2069-2090. doi: 10.3934/dcds.2014.34.2069  Frédéric Abergel, Jean-Michel Rakotoson. Gradient blow-up in Zygmund spaces for the very weak solution of a linear elliptic equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1809-1818. doi: 10.3934/dcds.2013.33.1809  Ronghua Jiang, Jun Zhou. Blow-up and global existence of solutions to a parabolic equation associated with the fraction p-Laplacian. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1205-1226. doi: 10.3934/cpaa.2019058  Yi-hang Hao, Xian-Gao Liu. The existence and blow-up criterion of liquid crystals system in critical Besov space. Communications on Pure & Applied Analysis, 2014, 13 (1) : 225-236. doi: 10.3934/cpaa.2014.13.225  Gongwei Liu. The existence, general decay and blow-up for a plate equation with nonlinear damping and a logarithmic source term. Electronic Research Archive, 2020, 28 (1) : 263-289. doi: 10.3934/era.2020016  Shuyin Wu, Joachim Escher, Zhaoyang Yin. Global existence and blow-up phenomena for a weakly dissipative Degasperis-Procesi equation. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 633-645. doi: 10.3934/dcdsb.2009.12.633  Shiming Li, Yongsheng Li, Wei Yan. A global existence and blow-up threshold for Davey-Stewartson equations in $\mathbb{R}^3$. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1899-1912. doi: 10.3934/dcdss.2016077  Bin Li. On the blow-up criterion and global existence of a nonlinear PDE system in biological transport networks. Kinetic & Related Models, 2019, 12 (5) : 1131-1162. doi: 10.3934/krm.2019043  Akmel Dé Godefroy. Existence, decay and blow-up for solutions to the sixth-order generalized Boussinesq equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 117-137. doi: 10.3934/dcds.2015.35.117  Mingyou Zhang, Qingsong Zhao, Yu Liu, Wenke Li. Finite time blow-up and global existence of solutions for semilinear parabolic equations with nonlinear dynamical boundary condition. Electronic Research Archive, 2020, 28 (1) : 369-381. doi: 10.3934/era.2020021  Lili Du, Chunlai Mu, Zhaoyin Xiang. Global existence and blow-up to a reaction-diffusion system with nonlinear memory. Communications on Pure & Applied Analysis, 2005, 4 (4) : 721-733. doi: 10.3934/cpaa.2005.4.721  Xiumei Deng, Jun Zhou. Global existence and blow-up of solutions to a semilinear heat equation with singular potential and logarithmic nonlinearity. Communications on Pure & Applied Analysis, 2020, 19 (2) : 923-939. doi: 10.3934/cpaa.2020042  Shu-Xiang Huang, Fu-Cai Li, Chun-Hong Xie. Global existence and blow-up of solutions to a nonlocal reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1519-1532. doi: 10.3934/dcds.2003.9.1519  Jianbo Cui, Jialin Hong, Liying Sun. On global existence and blow-up for damped stochastic nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6837-6854. doi: 10.3934/dcdsb.2019169  Monica Marras, Stella Vernier Piro. On global existence and bounds for blow-up time in nonlinear parabolic problems with time dependent coefficients. Conference Publications, 2013, 2013 (special) : 535-544. doi: 10.3934/proc.2013.2013.535

2019 Impact Factor: 1.233