-
Previous Article
Fourth-order hemivariational inequalities
- DCDS-S Home
- This Issue
-
Next Article
On some nonlocal eigenvalue problems
Multiplicity results to elliptic problems in $\mathbb{R}^N$
1. | Dipartimento Patrimonio Architettonico e Urbanistico, Facoltà di Architettura, Università di Reggio Calabria, Salita Melissari, 89124 Reggio Calabria, Italy |
2. | Department of Science for Engineering and Architecture (Mathematics Section), Engineering Faculty, University of Messina, 98166 - Messina, Italy |
References:
[1] |
R. A. Adams, "Sobolev Spaces,", Pure and Applied Mathematics, (1975).
|
[2] |
G. Barletta, Existence of solutions for some discontinuous problems involving the p-Laplacian,, J. Nonlinear Funct. Anal. Differ. Equ., 2 (2008), 95. Google Scholar |
[3] |
G. Bonanno and P. Candito, Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities,, J. Differential Equations, 244 (2008), 3031.
doi: 10.1016/j.jde.2008.02.025. |
[4] |
H. Brézis, "Analyse Fonctionnelle - Théorie et Applications,", Collection Mathématiques Appliquées pur la Maîtrise, (1983).
|
[5] |
F. H. Clarke, "Optimization and Nonsmooth Analysis," Second edition,, Classics Appl. Math., 5 (1990).
|
[6] |
J. V. Gonçalves and C. O. Alves, Existence of positive solutions for $m-$laplacian equations in $\mathbbR^N$ involving critical Sobolev exponents,, Nonlinear Anal., 32 (1998), 53.
doi: 10.1016/S0362-546X(97)00452-5. |
[7] |
A. Kristály, C. Varga and V. Varga, A nonsmooth principle of symmetric criticality and variational–hemivariational inequalities,, J. Math. Anal. Appl., 325 (2007), 975.
doi: 10.1016/j.jmaa.2006.02.062. |
[8] |
A. Kristály, A double eigenvalue problem for Schrödinger equations involving sublinear nonlinearities at infinity,, Electron. J. Differential Equations, 2007 (): 1.
|
[9] |
S. A. Marano and D. Motreanu, On a three critical points theorem for non-differentiable functions and applications to nonlinear boundary value problems,, Nonlinear Anal., 48 (2002), 37.
doi: 10.1016/S0362-546X(00)00171-1. |
[10] |
B. Ricceri, On a three critical points theorem,, Arch. Math. (Basel), 75 (2000), 220.
|
[11] |
G. Zhang and S. Liu, Three symmetric solutions for a class of elliptic equations involving the p-Laplacian with discontinuous nonlinearities in $\mathbbR^N$,, Nonlinear Anal., 67 (2007), 2232.
doi: 10.1016/j.na.2006.09.013. |
show all references
References:
[1] |
R. A. Adams, "Sobolev Spaces,", Pure and Applied Mathematics, (1975).
|
[2] |
G. Barletta, Existence of solutions for some discontinuous problems involving the p-Laplacian,, J. Nonlinear Funct. Anal. Differ. Equ., 2 (2008), 95. Google Scholar |
[3] |
G. Bonanno and P. Candito, Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities,, J. Differential Equations, 244 (2008), 3031.
doi: 10.1016/j.jde.2008.02.025. |
[4] |
H. Brézis, "Analyse Fonctionnelle - Théorie et Applications,", Collection Mathématiques Appliquées pur la Maîtrise, (1983).
|
[5] |
F. H. Clarke, "Optimization and Nonsmooth Analysis," Second edition,, Classics Appl. Math., 5 (1990).
|
[6] |
J. V. Gonçalves and C. O. Alves, Existence of positive solutions for $m-$laplacian equations in $\mathbbR^N$ involving critical Sobolev exponents,, Nonlinear Anal., 32 (1998), 53.
doi: 10.1016/S0362-546X(97)00452-5. |
[7] |
A. Kristály, C. Varga and V. Varga, A nonsmooth principle of symmetric criticality and variational–hemivariational inequalities,, J. Math. Anal. Appl., 325 (2007), 975.
doi: 10.1016/j.jmaa.2006.02.062. |
[8] |
A. Kristály, A double eigenvalue problem for Schrödinger equations involving sublinear nonlinearities at infinity,, Electron. J. Differential Equations, 2007 (): 1.
|
[9] |
S. A. Marano and D. Motreanu, On a three critical points theorem for non-differentiable functions and applications to nonlinear boundary value problems,, Nonlinear Anal., 48 (2002), 37.
doi: 10.1016/S0362-546X(00)00171-1. |
[10] |
B. Ricceri, On a three critical points theorem,, Arch. Math. (Basel), 75 (2000), 220.
|
[11] |
G. Zhang and S. Liu, Three symmetric solutions for a class of elliptic equations involving the p-Laplacian with discontinuous nonlinearities in $\mathbbR^N$,, Nonlinear Anal., 67 (2007), 2232.
doi: 10.1016/j.na.2006.09.013. |
[1] |
Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036 |
[2] |
Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185 |
[3] |
Philippe Laurençot, Christoph Walker. Variational solutions to an evolution model for MEMS with heterogeneous dielectric properties. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 677-694. doi: 10.3934/dcdss.2020360 |
[4] |
Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272 |
[5] |
Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070 |
[6] |
Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033 |
[7] |
Yunfeng Jia, Yi Li, Jianhua Wu, Hong-Kun Xu. Cauchy problem of semilinear inhomogeneous elliptic equations of Matukuma-type with multiple growth terms. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3485-3507. doi: 10.3934/dcds.2019227 |
[8] |
Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020170 |
[9] |
Chun Liu, Huan Sun. On energetic variational approaches in modeling the nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 455-475. doi: 10.3934/dcds.2009.23.455 |
[10] |
Lateef Olakunle Jolaoso, Maggie Aphane. Bregman subgradient extragradient method with monotone self-adjustment stepsize for solving pseudo-monotone variational inequalities and fixed point problems. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020178 |
[11] |
Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3305-3325. doi: 10.3934/dcds.2020045 |
[12] |
Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439 |
[13] |
Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020171 |
[14] |
Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, 2021, 20 (2) : 867-884. doi: 10.3934/cpaa.2020294 |
[15] |
Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253 |
[16] |
Ömer Arslan, Selçuk Kürşat İşleyen. A model and two heuristic methods for The Multi-Product Inventory-Location-Routing Problem with heterogeneous fleet. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021002 |
[17] |
Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296 |
[18] |
Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020340 |
[19] |
Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020436 |
[20] |
Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]