August  2012, 5(4): 753-764. doi: 10.3934/dcdss.2012.5.753

Multiple solutions for a Neumann-type differential inclusion problem involving the $p(\cdot)$-Laplacian

1. 

Department of Science for Engineering and Architecture (Mathematics Section), Engineering Faculty, University of Messina, Messina, 98166, Italy

2. 

Department MECMAT, Engineering Faculty, University of Reggio Calabria, Reggio Calabria, 89100, Italy

Received  April 2011 Revised  August 2011 Published  November 2011

Using a multiple critical points theorem for locally Lipschitz continuous functionals, we establish the existence of at least three distinct solutions for a Neumann-type differential inclusion problem involving the $p(\cdot)$-Laplacian.
Citation: Antonia Chinnì, Roberto Livrea. Multiple solutions for a Neumann-type differential inclusion problem involving the $p(\cdot)$-Laplacian. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 753-764. doi: 10.3934/dcdss.2012.5.753
References:
[1]

G. Bonanno, Some remarks on a three critical points theorem,, Nonlinear Anal., 54 (2003), 651.  doi: 10.1016/S0362-546X(03)00092-0.  Google Scholar

[2]

G. Bonanno and P. Candito, Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities,, J. Differential Equations, 244 (2008), 3031.  doi: 10.1016/j.jde.2008.02.025.  Google Scholar

[3]

G. Bonanno and A. Chinnì, Discontinuous elliptic problems involving the $p(x)$-Laplacian,, Math. Nachr., 284 (2011), 639.  doi: 10.1002/mana.200810232.  Google Scholar

[4]

G. Bonanno and A. Chinnì, Multiple solutions for elliptic problems involving the $p(x)$-Laplacian,, Le Matematiche, LXVI (2011), 105.   Google Scholar

[5]

G. Bonanno and S. A. Marano, On the structure of the critical set of non-differentiable functions with a weak compactness condition,, Appl. Anal., 89 (2010), 1.  doi: 10.1080/00036810903397438.  Google Scholar

[6]

F. Cammaroto, A. Chinnì and B. Di Bella, Multiple solutions for a Neumann problem involving the $p(x)$-Laplacian,, Nonlinear Anal., 71 (2009), 4486.  doi: 10.1016/j.na.2009.03.009.  Google Scholar

[7]

K. C. Chang, Variational methods for nondifferentiable functionals and their applications to partial differential equations,, J. Math. Anal. Appl., 80 (1981), 102.  doi: 10.1016/0022-247X(81)90095-0.  Google Scholar

[8]

F. H. Clarke, "Optimization and Nonsmooth Analysis," Second edition,, Classics Appl. Math., 5 (1990).   Google Scholar

[9]

G. Dai, Three solutions for a Neumann-type differential inclusion problem involving the $p(x)$-Laplacian,, Nonlinear Anal., 70 (2009), 3755.  doi: 10.1016/j.na.2008.07.031.  Google Scholar

[10]

G. Dai, Infinitely many solutions for a Neumann-type differential inclusion problem involving the $p(x)$-Laplacian,, Nonlinear Anal., 70 (2009), 2297.  doi: 10.1016/j.na.2008.03.009.  Google Scholar

[11]

X. Fan and S.-G. Deng, Remarks on Ricceri's variational principle and applications to the $p(x)$-Laplacian equations,, Nonlinear Anal., 67 (2007), 3064.  doi: 10.1016/j.na.2006.09.060.  Google Scholar

[12]

X. Fan and C. Ji, Existence of infinitely many solutions for a Neumann problem involving the $p(x)$-Laplacian,, J. Math. Anal. Appl., 334 (2007), 248.  doi: 10.1016/j.jmaa.2006.12.055.  Google Scholar

[13]

X. Fan and D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$,, J. Math. Anal. Appl., 263 (2001), 424.  doi: 10.1006/jmaa.2000.7617.  Google Scholar

[14]

O. Kováčik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{1,p(x)}$,, Czechoslovak Math., 41 (1991), 592.   Google Scholar

[15]

A. Kristály, Infinitely many solutions for a differential inclusion problem in $\mathbbR^n$,, J. Differential Equations, 220 (2006), 511.  doi: 10.1016/j.jde.2005.02.007.  Google Scholar

[16]

A. Kristály, M. Mihǎilescu and V. Rǎdulescu, Two non-trivial solutions for a non-homogeneous Neumann problem: An Orlicz-Sobolev space setting,, Proc. Royal Soc. Edinburgh Sect. A, 139 (2009), 367.  doi: 10.1017/S030821050700025X.  Google Scholar

[17]

S. A. Marano and D. Motreanu, On a three critical points theorem for non-differentiable functions and applications to nonlinear boundary value problems,, Nonlinear Anal., 48 (2002), 37.  doi: 10.1016/S0362-546X(00)00171-1.  Google Scholar

[18]

S. A. Marano and D. Motreanu, Infinitely many critical points of non-differentiable functions and applications to a Neumann-type problem involving the p-Laplacian,, J. Differential Equations, 182 (2002), 108.  doi: 10.1006/jdeq.2001.4092.  Google Scholar

[19]

M. Mihǎilescu, Existence and multiplicity of solutions for a Neumann problem involving the $p(x)$-Laplace operator,, Nonlinear Analysis, 67 (2007), 1419.  doi: 10.1016/j.na.2006.07.027.  Google Scholar

[20]

D. S. Moschetto, A quasilinear Neumann problem involving the $p(x)$-Laplacian,, Nonlinear Anal., 71 (2009), 2739.  doi: 10.1016/j.na.2009.01.109.  Google Scholar

[21]

D. Motreanu and N. S. Papageorgiou, On some elliptic hemivariational and variational-hemivariational inequalities,, Nonlinear Anal., 62 (2005), 757.  doi: 10.1016/j.na.2005.03.101.  Google Scholar

[22]

N. S. Papageorgiou and E. M. Rocha, "Existence and Multiplicity of Solutions for the Noncoercive Neumann p-Laplacian,", Preceedings of the 2007 Conference on Variational and Toplogical Methods: Theory, 18 (2010), 57.   Google Scholar

[23]

N. S. Papageorgiou and G. Smyrlis, Multiple solutions for nonlinear Neumann problems with the p-Laplacian and a nonsmooth crossing potential,, Nonlinearity, 23 (2010), 529.  doi: 10.1088/0951-7715/23/3/005.  Google Scholar

[24]

B. Ricceri, On a three critical points theorem,, Arch. Math. (Basel), 75 (2000), 220.   Google Scholar

[25]

B. Ricceri, A general variational principle and some of its applications,, J. Comput. Appl. Math., 113 (2000).  doi: 10.1016/S0377-0427(99)00269-1.  Google Scholar

show all references

References:
[1]

G. Bonanno, Some remarks on a three critical points theorem,, Nonlinear Anal., 54 (2003), 651.  doi: 10.1016/S0362-546X(03)00092-0.  Google Scholar

[2]

G. Bonanno and P. Candito, Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities,, J. Differential Equations, 244 (2008), 3031.  doi: 10.1016/j.jde.2008.02.025.  Google Scholar

[3]

G. Bonanno and A. Chinnì, Discontinuous elliptic problems involving the $p(x)$-Laplacian,, Math. Nachr., 284 (2011), 639.  doi: 10.1002/mana.200810232.  Google Scholar

[4]

G. Bonanno and A. Chinnì, Multiple solutions for elliptic problems involving the $p(x)$-Laplacian,, Le Matematiche, LXVI (2011), 105.   Google Scholar

[5]

G. Bonanno and S. A. Marano, On the structure of the critical set of non-differentiable functions with a weak compactness condition,, Appl. Anal., 89 (2010), 1.  doi: 10.1080/00036810903397438.  Google Scholar

[6]

F. Cammaroto, A. Chinnì and B. Di Bella, Multiple solutions for a Neumann problem involving the $p(x)$-Laplacian,, Nonlinear Anal., 71 (2009), 4486.  doi: 10.1016/j.na.2009.03.009.  Google Scholar

[7]

K. C. Chang, Variational methods for nondifferentiable functionals and their applications to partial differential equations,, J. Math. Anal. Appl., 80 (1981), 102.  doi: 10.1016/0022-247X(81)90095-0.  Google Scholar

[8]

F. H. Clarke, "Optimization and Nonsmooth Analysis," Second edition,, Classics Appl. Math., 5 (1990).   Google Scholar

[9]

G. Dai, Three solutions for a Neumann-type differential inclusion problem involving the $p(x)$-Laplacian,, Nonlinear Anal., 70 (2009), 3755.  doi: 10.1016/j.na.2008.07.031.  Google Scholar

[10]

G. Dai, Infinitely many solutions for a Neumann-type differential inclusion problem involving the $p(x)$-Laplacian,, Nonlinear Anal., 70 (2009), 2297.  doi: 10.1016/j.na.2008.03.009.  Google Scholar

[11]

X. Fan and S.-G. Deng, Remarks on Ricceri's variational principle and applications to the $p(x)$-Laplacian equations,, Nonlinear Anal., 67 (2007), 3064.  doi: 10.1016/j.na.2006.09.060.  Google Scholar

[12]

X. Fan and C. Ji, Existence of infinitely many solutions for a Neumann problem involving the $p(x)$-Laplacian,, J. Math. Anal. Appl., 334 (2007), 248.  doi: 10.1016/j.jmaa.2006.12.055.  Google Scholar

[13]

X. Fan and D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$,, J. Math. Anal. Appl., 263 (2001), 424.  doi: 10.1006/jmaa.2000.7617.  Google Scholar

[14]

O. Kováčik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{1,p(x)}$,, Czechoslovak Math., 41 (1991), 592.   Google Scholar

[15]

A. Kristály, Infinitely many solutions for a differential inclusion problem in $\mathbbR^n$,, J. Differential Equations, 220 (2006), 511.  doi: 10.1016/j.jde.2005.02.007.  Google Scholar

[16]

A. Kristály, M. Mihǎilescu and V. Rǎdulescu, Two non-trivial solutions for a non-homogeneous Neumann problem: An Orlicz-Sobolev space setting,, Proc. Royal Soc. Edinburgh Sect. A, 139 (2009), 367.  doi: 10.1017/S030821050700025X.  Google Scholar

[17]

S. A. Marano and D. Motreanu, On a three critical points theorem for non-differentiable functions and applications to nonlinear boundary value problems,, Nonlinear Anal., 48 (2002), 37.  doi: 10.1016/S0362-546X(00)00171-1.  Google Scholar

[18]

S. A. Marano and D. Motreanu, Infinitely many critical points of non-differentiable functions and applications to a Neumann-type problem involving the p-Laplacian,, J. Differential Equations, 182 (2002), 108.  doi: 10.1006/jdeq.2001.4092.  Google Scholar

[19]

M. Mihǎilescu, Existence and multiplicity of solutions for a Neumann problem involving the $p(x)$-Laplace operator,, Nonlinear Analysis, 67 (2007), 1419.  doi: 10.1016/j.na.2006.07.027.  Google Scholar

[20]

D. S. Moschetto, A quasilinear Neumann problem involving the $p(x)$-Laplacian,, Nonlinear Anal., 71 (2009), 2739.  doi: 10.1016/j.na.2009.01.109.  Google Scholar

[21]

D. Motreanu and N. S. Papageorgiou, On some elliptic hemivariational and variational-hemivariational inequalities,, Nonlinear Anal., 62 (2005), 757.  doi: 10.1016/j.na.2005.03.101.  Google Scholar

[22]

N. S. Papageorgiou and E. M. Rocha, "Existence and Multiplicity of Solutions for the Noncoercive Neumann p-Laplacian,", Preceedings of the 2007 Conference on Variational and Toplogical Methods: Theory, 18 (2010), 57.   Google Scholar

[23]

N. S. Papageorgiou and G. Smyrlis, Multiple solutions for nonlinear Neumann problems with the p-Laplacian and a nonsmooth crossing potential,, Nonlinearity, 23 (2010), 529.  doi: 10.1088/0951-7715/23/3/005.  Google Scholar

[24]

B. Ricceri, On a three critical points theorem,, Arch. Math. (Basel), 75 (2000), 220.   Google Scholar

[25]

B. Ricceri, A general variational principle and some of its applications,, J. Comput. Appl. Math., 113 (2000).  doi: 10.1016/S0377-0427(99)00269-1.  Google Scholar

[1]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[2]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[3]

Fabian Ziltener. Note on coisotropic Floer homology and leafwise fixed points. Electronic Research Archive, , () : -. doi: 10.3934/era.2021001

[4]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021006

[5]

Shengbing Deng, Tingxi Hu, Chun-Lei Tang. $ N- $Laplacian problems with critical double exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 987-1003. doi: 10.3934/dcds.2020306

[6]

Bing Yu, Lei Zhang. Global optimization-based dimer method for finding saddle points. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 741-753. doi: 10.3934/dcdsb.2020139

[7]

Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021005

[8]

Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125

[9]

Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268

[10]

Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266

[11]

Wenrui Hao, King-Yeung Lam, Yuan Lou. Ecological and evolutionary dynamics in advective environments: Critical domain size and boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 367-400. doi: 10.3934/dcdsb.2020283

[12]

Giulio Ciraolo, Antonio Greco. An overdetermined problem associated to the Finsler Laplacian. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021004

[13]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[14]

Nicolas Dirr, Hubertus Grillmeier, Günther Grün. On stochastic porous-medium equations with critical-growth conservative multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020388

[15]

Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258

[16]

Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-maxwell-kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020292

[17]

Darko Dimitrov, Hosam Abdo. Tight independent set neighborhood union condition for fractional critical deleted graphs and ID deleted graphs. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 711-721. doi: 10.3934/dcdss.2019045

[18]

Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021008

[19]

Hongming Ru, Chunming Tang, Yanfeng Qi, Yuxiao Deng. A construction of $ p $-ary linear codes with two or three weights. Advances in Mathematics of Communications, 2021, 15 (1) : 9-22. doi: 10.3934/amc.2020039

[20]

Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (49)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]