\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Multiple solutions for a Neumann-type differential inclusion problem involving the $p(\cdot)$-Laplacian

Abstract Related Papers Cited by
  • Using a multiple critical points theorem for locally Lipschitz continuous functionals, we establish the existence of at least three distinct solutions for a Neumann-type differential inclusion problem involving the $p(\cdot)$-Laplacian.
    Mathematics Subject Classification: Primary: 35J20, 35R70.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    G. Bonanno, Some remarks on a three critical points theorem, Nonlinear Anal., 54 (2003), 651-665.doi: 10.1016/S0362-546X(03)00092-0.

    [2]

    G. Bonanno and P. Candito, Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities, J. Differential Equations, 244 (2008), 3031-3059.doi: 10.1016/j.jde.2008.02.025.

    [3]

    G. Bonanno and A. Chinnì, Discontinuous elliptic problems involving the $p(x)$-Laplacian, Math. Nachr., 284 (2011), 639-652.doi: 10.1002/mana.200810232.

    [4]

    G. Bonanno and A. Chinnì, Multiple solutions for elliptic problems involving the $p(x)$-Laplacian, Le Matematiche, LXVI - Fasc. I (2011), 105-113.

    [5]

    G. Bonanno and S. A. Marano, On the structure of the critical set of non-differentiable functions with a weak compactness condition, Appl. Anal., 89 (2010), 1-10.doi: 10.1080/00036810903397438.

    [6]

    F. Cammaroto, A. Chinnì and B. Di Bella, Multiple solutions for a Neumann problem involving the $p(x)$-Laplacian, Nonlinear Anal., 71 (2009), 4486-4492.doi: 10.1016/j.na.2009.03.009.

    [7]

    K. C. Chang, Variational methods for nondifferentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl., 80 (1981), 102-129.doi: 10.1016/0022-247X(81)90095-0.

    [8]

    F. H. Clarke, "Optimization and Nonsmooth Analysis," Second edition, Classics Appl. Math., 5, SIAM, Philadelphia, PA, 1990.

    [9]

    G. Dai, Three solutions for a Neumann-type differential inclusion problem involving the $p(x)$-Laplacian, Nonlinear Anal., 70 (2009), 3755-3760.doi: 10.1016/j.na.2008.07.031.

    [10]

    G. Dai, Infinitely many solutions for a Neumann-type differential inclusion problem involving the $p(x)$-Laplacian, Nonlinear Anal., 70 (2009), 2297-2305.doi: 10.1016/j.na.2008.03.009.

    [11]

    X. Fan and S.-G. Deng, Remarks on Ricceri's variational principle and applications to the $p(x)$-Laplacian equations, Nonlinear Anal., 67 (2007), 3064-3075.doi: 10.1016/j.na.2006.09.060.

    [12]

    X. Fan and C. Ji, Existence of infinitely many solutions for a Neumann problem involving the $p(x)$-Laplacian, J. Math. Anal. Appl., 334 (2007), 248-260.doi: 10.1016/j.jmaa.2006.12.055.

    [13]

    X. Fan and D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$, J. Math. Anal. Appl., 263 (2001), 424-446.doi: 10.1006/jmaa.2000.7617.

    [14]

    O. Kováčik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{1,p(x)}$, Czechoslovak Math., 41 (1991), 592-618.

    [15]

    A. Kristály, Infinitely many solutions for a differential inclusion problem in $\mathbbR^n$, J. Differential Equations, 220 (2006), 511-530.doi: 10.1016/j.jde.2005.02.007.

    [16]

    A. Kristály, M. Mihǎilescu and V. Rǎdulescu, Two non-trivial solutions for a non-homogeneous Neumann problem: An Orlicz-Sobolev space setting, Proc. Royal Soc. Edinburgh Sect. A, 139 (2009), 367-379.doi: 10.1017/S030821050700025X.

    [17]

    S. A. Marano and D. Motreanu, On a three critical points theorem for non-differentiable functions and applications to nonlinear boundary value problems, Nonlinear Anal., 48 (2002), 37-52.doi: 10.1016/S0362-546X(00)00171-1.

    [18]

    S. A. Marano and D. Motreanu, Infinitely many critical points of non-differentiable functions and applications to a Neumann-type problem involving the p-Laplacian, J. Differential Equations, 182 (2002), 108-120.doi: 10.1006/jdeq.2001.4092.

    [19]

    M. Mihǎilescu, Existence and multiplicity of solutions for a Neumann problem involving the $p(x)$-Laplace operator, Nonlinear Analysis, 67 (2007), 1419-1425.doi: 10.1016/j.na.2006.07.027.

    [20]

    D. S. Moschetto, A quasilinear Neumann problem involving the $p(x)$-Laplacian, Nonlinear Anal., 71 (2009), 2739-2743.doi: 10.1016/j.na.2009.01.109.

    [21]

    D. Motreanu and N. S. Papageorgiou, On some elliptic hemivariational and variational-hemivariational inequalities, Nonlinear Anal., 62 (2005), 757-774.doi: 10.1016/j.na.2005.03.101.

    [22]

    N. S. Papageorgiou and E. M. Rocha, "Existence and Multiplicity of Solutions for the Noncoercive Neumann p-Laplacian," Preceedings of the 2007 Conference on Variational and Toplogical Methods: Theory, Application, Numerical Simulations, and Open Problems, Electronic Journal of Differential Equations Conference, 18, Southwest Texas State Univ., San Marcos, TX, (2010), 57-66.

    [23]

    N. S. Papageorgiou and G. Smyrlis, Multiple solutions for nonlinear Neumann problems with the p-Laplacian and a nonsmooth crossing potential, Nonlinearity, 23 (2010), 529-548.doi: 10.1088/0951-7715/23/3/005.

    [24]

    B. Ricceri, On a three critical points theorem, Arch. Math. (Basel), 75 (2000), 220-226.

    [25]

    B. Ricceri, A general variational principle and some of its applications, J. Comput. Appl. Math., 113 (2000), 401–-410.doi: 10.1016/S0377-0427(99)00269-1.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(122) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return