August  2012, 5(4): 765-777. doi: 10.3934/dcdss.2012.5.765

Multiple solutions to a Neumann problem with equi-diffusive reaction term

1. 

Engineering Faculty, University of Messina, 98166 Messina, Italy

2. 

Dipartimento di Matematica e Informatica, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania

3. 

Department of Mathematics, National Technical University of Athens, Zografou Campus, Athens 15780

Received  January 2011 Revised  February 2011 Published  November 2011

The existence of four solutions, one negative, one positive, and two sign-changing (namely, nodal), for a Neumann boundary-value problem with right-hand side depending on a positive parameter is established. Proofs make use of sub- and super-solution techniques as well as Morse theory.
Citation: Giuseppina D’Aguì, Salvatore A. Marano, Nikolaos S. Papageorgiou. Multiple solutions to a Neumann problem with equi-diffusive reaction term. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 765-777. doi: 10.3934/dcdss.2012.5.765
References:
[1]

S. Aizicovici, N. S. Papageorgiou and V. Staicu, Existence of multiple solutions with precise sign information for superlinear Neumann problems,, Ann. Mat. Pura Appl. (4), 188 (2009), 679.  doi: 10.1007/s10231-009-0096-7.  Google Scholar

[2]

P. Bartolo, V. Benci and D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with "strong'' resonance at infinity,, Nonlinear Anal., 7 (1983), 981.  doi: 10.1016/0362-546X(83)90115-3.  Google Scholar

[3]

T. Bartsch, K.-C. Chang and Z.-Q. Wang, On the Morse indices of sign changing solutions of nonlinear elliptic problems,, Math. Z., 233 (2000), 655.  doi: 10.1007/s002090050492.  Google Scholar

[4]

T. Bartsch and S. Li, Critical point theory for asymptotically quadratic functionals and applications to problems with resonance,, Nonlinear Anal., 28 (1997), 419.  doi: 10.1016/0362-546X(95)00167-T.  Google Scholar

[5]

K.-C. Chang, "Methods in Nonlinear Analysis,", Springer Monographs in Mathematics, (2005).   Google Scholar

[6]

A. Kristály and N. S. Papageorgiou, Multiple nontrivial solutions for Neumann problems involving the $p$-Laplacian: A Morse theoretical approach,, Adv. Nonlinear Stud., 10 (2010), 83.   Google Scholar

[7]

S. T. Kyritsi and N. S. Papageorgiou, Three nontrivial solutions for Neumann problems resonant at any positive eigenvalue,, Matematiche (Catania), 65 (2010), 79.   Google Scholar

[8]

An Lê, Eigenvalue problems for the $p$-Laplacian,, Nonlinear Anal., 64 (2006), 1057.  doi: 10.1016/j.na.2005.06.024.  Google Scholar

[9]

S. A. Marano and N. S. Papageorgiou, On a Neumann problem with $p$-Laplacian and non-coercive resonant nonlinearity,, Pacific J. Math., ().   Google Scholar

[10]

S. A. Marano and N. S. Papageorgiou, Constant-sign and nodal solutions for a Neumann problem with $p$-Laplacian and equi-diffusive reaction term,, Topol. Methods Nonlinear Anal., 38 (2011).   Google Scholar

[11]

J. Mawhin and M. Willem, "Critical Point Theory and Hamiltonian Systems,", Appl. Math. Sci., 74 (1989).   Google Scholar

[12]

D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, A degree theoretic approach for multiple solutions of constant sign for nonlinear elliptic equations,, Manuscripta Math., 124 (2007), 507.  doi: 10.1007/s00229-007-0127-x.  Google Scholar

[13]

D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, Nonlinear Neumann problems near resonance,, Indiana Univ. Math. J., 58 (2009), 1257.  doi: 10.1512/iumj.2009.58.3565.  Google Scholar

[14]

W. Zou and J. Q. Liu, Multiple solutions for resonant elliptic equations via local linking theory and Morse theory,, J. Differential Equations, 170 (2001), 68.  doi: 10.1006/jdeq.2000.3812.  Google Scholar

show all references

References:
[1]

S. Aizicovici, N. S. Papageorgiou and V. Staicu, Existence of multiple solutions with precise sign information for superlinear Neumann problems,, Ann. Mat. Pura Appl. (4), 188 (2009), 679.  doi: 10.1007/s10231-009-0096-7.  Google Scholar

[2]

P. Bartolo, V. Benci and D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with "strong'' resonance at infinity,, Nonlinear Anal., 7 (1983), 981.  doi: 10.1016/0362-546X(83)90115-3.  Google Scholar

[3]

T. Bartsch, K.-C. Chang and Z.-Q. Wang, On the Morse indices of sign changing solutions of nonlinear elliptic problems,, Math. Z., 233 (2000), 655.  doi: 10.1007/s002090050492.  Google Scholar

[4]

T. Bartsch and S. Li, Critical point theory for asymptotically quadratic functionals and applications to problems with resonance,, Nonlinear Anal., 28 (1997), 419.  doi: 10.1016/0362-546X(95)00167-T.  Google Scholar

[5]

K.-C. Chang, "Methods in Nonlinear Analysis,", Springer Monographs in Mathematics, (2005).   Google Scholar

[6]

A. Kristály and N. S. Papageorgiou, Multiple nontrivial solutions for Neumann problems involving the $p$-Laplacian: A Morse theoretical approach,, Adv. Nonlinear Stud., 10 (2010), 83.   Google Scholar

[7]

S. T. Kyritsi and N. S. Papageorgiou, Three nontrivial solutions for Neumann problems resonant at any positive eigenvalue,, Matematiche (Catania), 65 (2010), 79.   Google Scholar

[8]

An Lê, Eigenvalue problems for the $p$-Laplacian,, Nonlinear Anal., 64 (2006), 1057.  doi: 10.1016/j.na.2005.06.024.  Google Scholar

[9]

S. A. Marano and N. S. Papageorgiou, On a Neumann problem with $p$-Laplacian and non-coercive resonant nonlinearity,, Pacific J. Math., ().   Google Scholar

[10]

S. A. Marano and N. S. Papageorgiou, Constant-sign and nodal solutions for a Neumann problem with $p$-Laplacian and equi-diffusive reaction term,, Topol. Methods Nonlinear Anal., 38 (2011).   Google Scholar

[11]

J. Mawhin and M. Willem, "Critical Point Theory and Hamiltonian Systems,", Appl. Math. Sci., 74 (1989).   Google Scholar

[12]

D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, A degree theoretic approach for multiple solutions of constant sign for nonlinear elliptic equations,, Manuscripta Math., 124 (2007), 507.  doi: 10.1007/s00229-007-0127-x.  Google Scholar

[13]

D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, Nonlinear Neumann problems near resonance,, Indiana Univ. Math. J., 58 (2009), 1257.  doi: 10.1512/iumj.2009.58.3565.  Google Scholar

[14]

W. Zou and J. Q. Liu, Multiple solutions for resonant elliptic equations via local linking theory and Morse theory,, J. Differential Equations, 170 (2001), 68.  doi: 10.1006/jdeq.2000.3812.  Google Scholar

[1]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[2]

Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-maxwell-kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020292

[3]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[4]

Ryuji Kajikiya. Existence of nodal solutions for the sublinear Moore-Nehari differential equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1483-1506. doi: 10.3934/dcds.2020326

[5]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[6]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[7]

Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020293

[8]

Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021011

[9]

Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318

[10]

Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021028

[11]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[12]

Huijuan Song, Bei Hu, Zejia Wang. Stationary solutions of a free boundary problem modeling the growth of vascular tumors with a necrotic core. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 667-691. doi: 10.3934/dcdsb.2020084

[13]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, 2021, 14 (1) : 149-174. doi: 10.3934/krm.2020052

[14]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[15]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[16]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[17]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[18]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[19]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[20]

José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (31)
  • HTML views (0)
  • Cited by (2)

[Back to Top]