August  2012, 5(4): 779-788. doi: 10.3934/dcdss.2012.5.779

Three nonzero periodic solutions for a differential inclusion

1. 

Dipartimento di Matematica e Informatica, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy, Italy

Received  May 2011 Revised  July 2011 Published  November 2011

We prove the existence of three non-zero periodic solutions for an ordinary differential inclusion. Our approach is variational and based on a multiplicity theorem for the critical points of a nonsmooth functional, which extends a recent result of Ricceri.
Citation: Francesca Faraci, Antonio Iannizzotto. Three nonzero periodic solutions for a differential inclusion. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 779-788. doi: 10.3934/dcdss.2012.5.779
References:
[1]

G. Bonanno, A minimax inequality and its applications to ordinary differential equations,, J. Math. Anal. Appl., 270 (2002), 210. doi: 10.1016/S0022-247X(02)00068-9.

[2]

A. Boucherif and S. M. Bouguima, Periodic solutions of second [order] ordinary differential equations with a discontinuous nonlinearity,, in, 343 (1996), 54.

[3]

K. C. Chang, Variational methods for nondifferentiable functionals and their applications to partial differential equations,, J. Math. Anal. Appl., 80 (1981), 102. doi: 10.1016/0022-247X(81)90095-0.

[4]

L. H. Erbe and W. Krawcewicz, Nonlinear boundary value problems for differential inclusions $y''\in F(t,y,y')$,, Ann. Polon. Math., 54 (1991), 195.

[5]

M. Frigon and A. Granas, Problèmes aux limites pour des inclusions différentielles de type semi-continues inférieurement,, Riv. Mat. Univ. Parma (4), 17 (1991), 87.

[6]

A. Iannizzotto, Three critical points for perturbed nonsmooth functionals and applications,, Nonlinear Anal., 72 (2010), 1319. doi: 10.1016/j.na.2009.08.001.

[7]

D. Kandilakis, N. C. Kourogenis and N. S. Papageorgiou, Two nontrivial critical points for nonsmooth functionals via local linking and applications,, J. Global Optim., 34 (2006), 219. doi: 10.1007/s10898-005-3884-7.

[8]

M. Krastanov, N. Ribarska and T. Tsachev, A note on: "On a critical point theory for multivalued functionals and application to partial differential inclusions,'', Nonlinear Anal., 43 (2001), 153.

[9]

R. Livrea and S. A. Marano, On a min-max principle for non-smooth functions and applications,, Commun. Appl. Anal., 13 (2009), 411.

[10]

D. Motreanu and P. D. Panagiotopoulos, "Minimax Theorems and Qualitative Properties of the Solutions of Hemivariational Inequalities,", Nonconvex Optimization and its Applications, 29 (1999).

[11]

N. S. Papageorgiou and F. Papalini, Existence of two solutions for quasilinear periodic differential equations with discontinuities,, Arch. Math. (Brno), 38 (2002), 285.

[12]

B. Ricceri, Multiplicity of global minima for parametrized functions,, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 21 (2010), 47.

[13]

B. Ricceri, A class of nonlinear eigenvalue problems with four solutions,, J. Nonlinear Convex Anal., 11 (2010), 503.

show all references

References:
[1]

G. Bonanno, A minimax inequality and its applications to ordinary differential equations,, J. Math. Anal. Appl., 270 (2002), 210. doi: 10.1016/S0022-247X(02)00068-9.

[2]

A. Boucherif and S. M. Bouguima, Periodic solutions of second [order] ordinary differential equations with a discontinuous nonlinearity,, in, 343 (1996), 54.

[3]

K. C. Chang, Variational methods for nondifferentiable functionals and their applications to partial differential equations,, J. Math. Anal. Appl., 80 (1981), 102. doi: 10.1016/0022-247X(81)90095-0.

[4]

L. H. Erbe and W. Krawcewicz, Nonlinear boundary value problems for differential inclusions $y''\in F(t,y,y')$,, Ann. Polon. Math., 54 (1991), 195.

[5]

M. Frigon and A. Granas, Problèmes aux limites pour des inclusions différentielles de type semi-continues inférieurement,, Riv. Mat. Univ. Parma (4), 17 (1991), 87.

[6]

A. Iannizzotto, Three critical points for perturbed nonsmooth functionals and applications,, Nonlinear Anal., 72 (2010), 1319. doi: 10.1016/j.na.2009.08.001.

[7]

D. Kandilakis, N. C. Kourogenis and N. S. Papageorgiou, Two nontrivial critical points for nonsmooth functionals via local linking and applications,, J. Global Optim., 34 (2006), 219. doi: 10.1007/s10898-005-3884-7.

[8]

M. Krastanov, N. Ribarska and T. Tsachev, A note on: "On a critical point theory for multivalued functionals and application to partial differential inclusions,'', Nonlinear Anal., 43 (2001), 153.

[9]

R. Livrea and S. A. Marano, On a min-max principle for non-smooth functions and applications,, Commun. Appl. Anal., 13 (2009), 411.

[10]

D. Motreanu and P. D. Panagiotopoulos, "Minimax Theorems and Qualitative Properties of the Solutions of Hemivariational Inequalities,", Nonconvex Optimization and its Applications, 29 (1999).

[11]

N. S. Papageorgiou and F. Papalini, Existence of two solutions for quasilinear periodic differential equations with discontinuities,, Arch. Math. (Brno), 38 (2002), 285.

[12]

B. Ricceri, Multiplicity of global minima for parametrized functions,, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 21 (2010), 47.

[13]

B. Ricceri, A class of nonlinear eigenvalue problems with four solutions,, J. Nonlinear Convex Anal., 11 (2010), 503.

[1]

Janosch Rieger. The Euler scheme for state constrained ordinary differential inclusions. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2729-2744. doi: 10.3934/dcdsb.2016070

[2]

Jean Mawhin, James R. Ward Jr. Guiding-like functions for periodic or bounded solutions of ordinary differential equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 39-54. doi: 10.3934/dcds.2002.8.39

[3]

Zhiming Guo, Xiaomin Zhang. Multiplicity results for periodic solutions to a class of second order delay differential equations. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1529-1542. doi: 10.3934/cpaa.2010.9.1529

[4]

Mariusz Michta. On solutions to stochastic differential inclusions. Conference Publications, 2003, 2003 (Special) : 618-622. doi: 10.3934/proc.2003.2003.618

[5]

Tomasz Kapela, Piotr Zgliczyński. A Lohner-type algorithm for control systems and ordinary differential inclusions. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 365-385. doi: 10.3934/dcdsb.2009.11.365

[6]

Jean Mawhin. Multiplicity of solutions of variational systems involving $\phi$-Laplacians with singular $\phi$ and periodic nonlinearities. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 4015-4026. doi: 10.3934/dcds.2012.32.4015

[7]

Ovidiu Carja, Victor Postolache. A Priori estimates for solutions of differential inclusions. Conference Publications, 2011, 2011 (Special) : 258-264. doi: 10.3934/proc.2011.2011.258

[8]

Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu, Dušan D. Repovš. Periodic solutions for implicit evolution inclusions. Evolution Equations & Control Theory, 2019, 8 (3) : 621-631. doi: 10.3934/eect.2019029

[9]

Richard A. Norton, G. R. W. Quispel. Discrete gradient methods for preserving a first integral of an ordinary differential equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1147-1170. doi: 10.3934/dcds.2014.34.1147

[10]

Iasson Karafyllis, Lars Grüne. Feedback stabilization methods for the numerical solution of ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 283-317. doi: 10.3934/dcdsb.2011.16.283

[11]

Wolf-Jüergen Beyn, Janosch Rieger. Galerkin finite element methods for semilinear elliptic differential inclusions. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 295-312. doi: 10.3934/dcdsb.2013.18.295

[12]

Mieczysław Cichoń, Bianca Satco. On the properties of solutions set for measure driven differential inclusions. Conference Publications, 2015, 2015 (special) : 287-296. doi: 10.3934/proc.2015.0287

[13]

Leszek Gasiński, Nikolaos S. Papageorgiou. Periodic solutions for nonlinear nonmonotone evolution inclusions. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 219-238. doi: 10.3934/dcdsb.2018015

[14]

Alessandro Fonda, Fabio Zanolin. Bounded solutions of nonlinear second order ordinary differential equations. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 91-98. doi: 10.3934/dcds.1998.4.91

[15]

Yuxiang Zhang, Shiwang Ma. Some existence results on periodic and subharmonic solutions of ordinary $P$-Laplacian systems. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 251-260. doi: 10.3934/dcdsb.2009.12.251

[16]

Weigao Ge, Li Zhang. Multiple periodic solutions of delay differential systems with $2k-1$ lags via variational approach. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4925-4943. doi: 10.3934/dcds.2016013

[17]

Yejuan Wang, Tongtong Liang. Mild solutions to the time fractional Navier-Stokes delay differential inclusions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-28. doi: 10.3934/dcdsb.2018312

[18]

Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu. Periodic solutions for time-dependent subdifferential evolution inclusions. Evolution Equations & Control Theory, 2017, 6 (2) : 277-297. doi: 10.3934/eect.2017015

[19]

Michel H. Geoffroy, Alain Piétrus. A fast iterative scheme for variational inclusions. Conference Publications, 2009, 2009 (Special) : 250-258. doi: 10.3934/proc.2009.2009.250

[20]

Thomas Lorenz. Mutational inclusions: Differential inclusions in metric spaces. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 629-654. doi: 10.3934/dcdsb.2010.14.629

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]