Citation: |
[1] |
G. A. Afrouzi and S. Heidarkhani, Multiplicity theorems for a class of Dirichlet quasilinear elliptic systems involving the $(p_1,...,p_n)$-Laplacian, Nonlin. Anal., 73 (2010), 2594-2602.doi: 10.1016/j.na.2010.06.038. |
[2] |
G. A. Afrouzi and S. Heidarkhani, Existence of three solutions for a class of Dirichlet quasilinear elliptic systems involving the $(p_1,...,p_n)$-Laplacian, Nonlin. Anal., 70 (2009), 135-143.doi: 10.1016/j.na.2007.11.038. |
[3] |
L. Boccardo and G. de Figueiredo, Some remarks on a system of quasilinear elliptic equations, NoDEA Nonlinear Diff. Equ. Appl., 9 (2002), 309-323. |
[4] |
P. C. Carrião and O. H. Miyagaki, Existence of non-trivial solutions of elliptic variational systems in unbounded domains, Nonlin. Anal., 51 (2002), 155-169.doi: 10.1016/S0362-546X(01)00817-3. |
[5] |
S. Heidarkhani and Y. Tian, Multiplicity results for a class of gradient systems depending on two parameters, Nonlin. Anal., 73 (2010), 547-554.doi: 10.1016/j.na.2010.03.051. |
[6] |
A. Kristály, Existence of two non-trivial solutions for a class of quasilinear elliptic variational systems on strip-like domains, Proc. Edinburgh Math. Soc. (2), 48 (2005), 465-477.doi: 10.1017/S0013091504000112. |
[7] |
C. Li and C.-L. Tang, Three solutions for a class of quasilinear elliptic systems involving the $(p,q)$-Laplacian, Nonlin. Anal., 69 (2008), 3322-3329.doi: 10.1016/j.na.2007.09.021. |
[8] |
P.-L. Lions, Symétrie et compactité dans les espaces Sobolev, J. Funct. Analysis, 49 (1982), 315-334.doi: 10.1016/0022-1236(82)90072-6. |
[9] |
R. S. Palais, The principle of symmetric criticality, Comm. Math. Phys., 69 (1979), 19-30.doi: 10.1007/BF01941322. |
[10] |
B. Ricceri, A further three critical points theorem, Nonlin. Anal., 71 (2009), 4151-4157.doi: 10.1016/j.na.2009.02.074. |