\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Multiple solutions for a perturbed system on strip-like domains

Abstract Related Papers Cited by
  • We prove a multiplicity result for a perturbed gradient-type system defined on strip-like domains. The approach is based on a recent Ricceri-type three critical point theorem.
    Mathematics Subject Classification: Primary: 35J65, 35J50; Secondary: 35P30.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    G. A. Afrouzi and S. Heidarkhani, Multiplicity theorems for a class of Dirichlet quasilinear elliptic systems involving the $(p_1,...,p_n)$-Laplacian, Nonlin. Anal., 73 (2010), 2594-2602.doi: 10.1016/j.na.2010.06.038.

    [2]

    G. A. Afrouzi and S. Heidarkhani, Existence of three solutions for a class of Dirichlet quasilinear elliptic systems involving the $(p_1,...,p_n)$-Laplacian, Nonlin. Anal., 70 (2009), 135-143.doi: 10.1016/j.na.2007.11.038.

    [3]

    L. Boccardo and G. de Figueiredo, Some remarks on a system of quasilinear elliptic equations, NoDEA Nonlinear Diff. Equ. Appl., 9 (2002), 309-323.

    [4]

    P. C. Carrião and O. H. Miyagaki, Existence of non-trivial solutions of elliptic variational systems in unbounded domains, Nonlin. Anal., 51 (2002), 155-169.doi: 10.1016/S0362-546X(01)00817-3.

    [5]

    S. Heidarkhani and Y. Tian, Multiplicity results for a class of gradient systems depending on two parameters, Nonlin. Anal., 73 (2010), 547-554.doi: 10.1016/j.na.2010.03.051.

    [6]

    A. Kristály, Existence of two non-trivial solutions for a class of quasilinear elliptic variational systems on strip-like domains, Proc. Edinburgh Math. Soc. (2), 48 (2005), 465-477.doi: 10.1017/S0013091504000112.

    [7]

    C. Li and C.-L. Tang, Three solutions for a class of quasilinear elliptic systems involving the $(p,q)$-Laplacian, Nonlin. Anal., 69 (2008), 3322-3329.doi: 10.1016/j.na.2007.09.021.

    [8]

    P.-L. Lions, Symétrie et compactité dans les espaces Sobolev, J. Funct. Analysis, 49 (1982), 315-334.doi: 10.1016/0022-1236(82)90072-6.

    [9]

    R. S. Palais, The principle of symmetric criticality, Comm. Math. Phys., 69 (1979), 19-30.doi: 10.1007/BF01941322.

    [10]

    B. Ricceri, A further three critical points theorem, Nonlin. Anal., 71 (2009), 4151-4157.doi: 10.1016/j.na.2009.02.074.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(92) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return