August  2012, 5(4): 797-808. doi: 10.3934/dcdss.2012.5.797

Stable and unstable initial configuration in the theory wave fronts

1. 

University of Oklahoma, Noman, OK 73019, United States

Received  March 2011 Revised  May 2011 Published  November 2011

In this paper we study the wavefront like phase transition of solutions of a parabolic nonlinear boundary value problem used to model phase transitions in the theory of boiling liquids. Using weak supersolutions we provide bounds for the propagation speed of such a phase transition. Also we construct stable supersolutions to initial configurations which have locally supercritical values.
Citation: Ruediger Landes. Stable and unstable initial configuration in the theory wave fronts. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 797-808. doi: 10.3934/dcdss.2012.5.797
References:
[1]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics,, Adv. in Math., 30 (1978), 33.  doi: 10.1016/0001-8708(78)90130-5.  Google Scholar

[2]

H. Auracher, W. Marquardt, M. Buchholz, R. Hohl, T. Lüttich and J. Blum, New experimental results on steady-state and transient pool boiling heat transfer,, Therm. Sci. Engng, 9 (2001), 29.   Google Scholar

[3]

J. Blum, T. Lüttich and W. Marquardt, Temperature Wave Propagation as a Route from Nucleate to Film Boiling?,, In, 1 (1999), 137.   Google Scholar

[4]

V. K. Dhir, Boiling heat transfer,, Annu. Rev. Fluid Mech., 30 (1998), 365.  doi: 10.1146/annurev.fluid.30.1.365.  Google Scholar

[5]

P. Fife, "Mathematical Aspects of Reacting and Diffusing Systems,", Lecture Notes in Biomathematics, 28 (1979).   Google Scholar

[6]

R. Landes, Wavefront solution in the theory of boiling liquids,, Analysis (Munich), 29 (2009), 283.   Google Scholar

[7]

T. Lüttich, W. Marquardt, M. Buchholz and H. Auracher, "Towards a Unifying Heat Transfer Correlation for the Entire Boiling Curve,", 5th International Conference on Boiling Heat Transfer, (2003).   Google Scholar

[8]

M. Speetjens, A. Reusken and W. Marquardt, Steady-state solutions in a nonlinear pool boiling model,, Commun. Nonlinear Sci. Numer. Simul., 13 (2008), 1475.  doi: 10.1016/j.cnsns.2006.11.001.  Google Scholar

[9]

M. Speetjens, A. Reusken and W. Marquardt, Steady-state solutions in a three-dimensional nonlinear pool-boiling heat-transfer model,, Commun. Nonlinear Sci. Numer. Simul., 13 (2008), 1518.  doi: 10.1016/j.cnsns.2006.11.002.  Google Scholar

[10]

J. R. Thome, Boiling,, in, (2003), 635.   Google Scholar

show all references

References:
[1]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics,, Adv. in Math., 30 (1978), 33.  doi: 10.1016/0001-8708(78)90130-5.  Google Scholar

[2]

H. Auracher, W. Marquardt, M. Buchholz, R. Hohl, T. Lüttich and J. Blum, New experimental results on steady-state and transient pool boiling heat transfer,, Therm. Sci. Engng, 9 (2001), 29.   Google Scholar

[3]

J. Blum, T. Lüttich and W. Marquardt, Temperature Wave Propagation as a Route from Nucleate to Film Boiling?,, In, 1 (1999), 137.   Google Scholar

[4]

V. K. Dhir, Boiling heat transfer,, Annu. Rev. Fluid Mech., 30 (1998), 365.  doi: 10.1146/annurev.fluid.30.1.365.  Google Scholar

[5]

P. Fife, "Mathematical Aspects of Reacting and Diffusing Systems,", Lecture Notes in Biomathematics, 28 (1979).   Google Scholar

[6]

R. Landes, Wavefront solution in the theory of boiling liquids,, Analysis (Munich), 29 (2009), 283.   Google Scholar

[7]

T. Lüttich, W. Marquardt, M. Buchholz and H. Auracher, "Towards a Unifying Heat Transfer Correlation for the Entire Boiling Curve,", 5th International Conference on Boiling Heat Transfer, (2003).   Google Scholar

[8]

M. Speetjens, A. Reusken and W. Marquardt, Steady-state solutions in a nonlinear pool boiling model,, Commun. Nonlinear Sci. Numer. Simul., 13 (2008), 1475.  doi: 10.1016/j.cnsns.2006.11.001.  Google Scholar

[9]

M. Speetjens, A. Reusken and W. Marquardt, Steady-state solutions in a three-dimensional nonlinear pool-boiling heat-transfer model,, Commun. Nonlinear Sci. Numer. Simul., 13 (2008), 1518.  doi: 10.1016/j.cnsns.2006.11.002.  Google Scholar

[10]

J. R. Thome, Boiling,, in, (2003), 635.   Google Scholar

[1]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[2]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[3]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[4]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[5]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[6]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[7]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[8]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[9]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[10]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[11]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[12]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[13]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[14]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[15]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[16]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[17]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[18]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[19]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[20]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (30)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]