August  2012, 5(4): 809-818. doi: 10.3934/dcdss.2012.5.809

On the existence of nontrivial solutions of inequalities in Orlicz-Sobolev spaces

1. 

Department of Mathematics and Statistics, Missouri University of Science and Technology, Rolla, MO 65409, United States

Received  February 2011 Revised  April 2011 Published  November 2011

This paper is about an alternate variational inequality formulation for the boundary value problem $$ \begin{array}{l} -{\rm div} (a(|\nabla u|) \nabla u) + \partial_u G(x,u) \ni 0 \;\mbox{ in } \;\Omega , \\ u=0 \;\mbox{ on } \;\partial\Omega , \end{array} $$ where the principal part may have non-polynomial or very slow growth. As a consequence of this formulation, we can apply abstract nonsmooth linking theorems to study the existence and multiplicity of nontrivial solutions to the above problem.
Citation: Vy Khoi Le. On the existence of nontrivial solutions of inequalities in Orlicz-Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 809-818. doi: 10.3934/dcdss.2012.5.809
References:
[1]

R. Adams, "Sobolev Spaces,", Pure and Applied Mathematics, (1975).   Google Scholar

[2]

J. Ball, J. Currie and P. Olver, Null lagrangians, weak continuity, and variational problems of arbitrary order,, J. Funct. Anal., 41 (1981), 135.  doi: 10.1016/0022-1236(81)90085-9.  Google Scholar

[3]

K. C. Chang, Variational methods for nondifferentiable functionals and their applications to partial differential equations,, J. Math. Anal. Appl., 80 (1981), 102.  doi: 10.1016/0022-247X(81)90095-0.  Google Scholar

[4]

F. H. Clarke, "Optimization and Nonsmooth Analysis," Second edition,, Classics in Applied Mathematics, 5 (1990).   Google Scholar

[5]

L. Gasiński and N. S. Papageorgiou, "Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems,", Series in Mathematical Analysis and Applications, 8 (2005).   Google Scholar

[6]

D. Goeleven, D. Motreanu, Y. Dumont and M. Rochdi, "Variational and Hemivariational Inequalities: Theory, Methods and Applications. Vol. I. Unilateral Analysis and Unilateral Mechanics,", Nonconvex Optimization and its Applications, 69 (2003).   Google Scholar

[7]

D. Goeleven and D. Motreanu, "Variational and Hemivariational Inequalities: Theory, Methods and Applications. Vol. II. Unilateral Problems,", Nonconvex Optimization and its Applications, 70 (2003).   Google Scholar

[8]

J.-P. Gossez, Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients,, Trans. Amer. Math. Soc., 190 (1974), 163.  doi: 10.1090/S0002-9947-1974-0342854-2.  Google Scholar

[9]

M. A. Krasnosels'kiĭ and J. Rutickiĭ, "Convex Functions and Orlicz Spaces,", Translated from the first Russian edition by Leo F. Boron, (1961).   Google Scholar

[10]

A. Kufner, O. John and S. Fučic, "Function Spaces,", Monographs and Textbooks on Mechanics of Solids and Fluids; Mechanics: Analysis, (1977).   Google Scholar

[11]

V. K. Le, Nontrivial solutions of mountain pass type of quasilinear equations with slowly growing principal parts,, J. Diff. Int. Eq., 15 (2002), 839.   Google Scholar

[12]

V. K. Le and D. Motreanu, On nontrivial solutions of variational-hemivariational inequalities with slowly growing principal parts,, Z. Anal. Anwend., 28 (2009), 277.   Google Scholar

[13]

R. Livrea and S. A. Marano, Non-smooth critical point theory,, in, (2010), 295.   Google Scholar

[14]

D. Motreanu and P. D. Panagiotopoulos, Minimax theorems and qualitative properties of the solutions of hemivariational inequalities,, Nonconvex Optimization and its Applications, 29 (1999).   Google Scholar

[15]

A. Szulkin, Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 3 (1986), 77.   Google Scholar

show all references

References:
[1]

R. Adams, "Sobolev Spaces,", Pure and Applied Mathematics, (1975).   Google Scholar

[2]

J. Ball, J. Currie and P. Olver, Null lagrangians, weak continuity, and variational problems of arbitrary order,, J. Funct. Anal., 41 (1981), 135.  doi: 10.1016/0022-1236(81)90085-9.  Google Scholar

[3]

K. C. Chang, Variational methods for nondifferentiable functionals and their applications to partial differential equations,, J. Math. Anal. Appl., 80 (1981), 102.  doi: 10.1016/0022-247X(81)90095-0.  Google Scholar

[4]

F. H. Clarke, "Optimization and Nonsmooth Analysis," Second edition,, Classics in Applied Mathematics, 5 (1990).   Google Scholar

[5]

L. Gasiński and N. S. Papageorgiou, "Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems,", Series in Mathematical Analysis and Applications, 8 (2005).   Google Scholar

[6]

D. Goeleven, D. Motreanu, Y. Dumont and M. Rochdi, "Variational and Hemivariational Inequalities: Theory, Methods and Applications. Vol. I. Unilateral Analysis and Unilateral Mechanics,", Nonconvex Optimization and its Applications, 69 (2003).   Google Scholar

[7]

D. Goeleven and D. Motreanu, "Variational and Hemivariational Inequalities: Theory, Methods and Applications. Vol. II. Unilateral Problems,", Nonconvex Optimization and its Applications, 70 (2003).   Google Scholar

[8]

J.-P. Gossez, Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients,, Trans. Amer. Math. Soc., 190 (1974), 163.  doi: 10.1090/S0002-9947-1974-0342854-2.  Google Scholar

[9]

M. A. Krasnosels'kiĭ and J. Rutickiĭ, "Convex Functions and Orlicz Spaces,", Translated from the first Russian edition by Leo F. Boron, (1961).   Google Scholar

[10]

A. Kufner, O. John and S. Fučic, "Function Spaces,", Monographs and Textbooks on Mechanics of Solids and Fluids; Mechanics: Analysis, (1977).   Google Scholar

[11]

V. K. Le, Nontrivial solutions of mountain pass type of quasilinear equations with slowly growing principal parts,, J. Diff. Int. Eq., 15 (2002), 839.   Google Scholar

[12]

V. K. Le and D. Motreanu, On nontrivial solutions of variational-hemivariational inequalities with slowly growing principal parts,, Z. Anal. Anwend., 28 (2009), 277.   Google Scholar

[13]

R. Livrea and S. A. Marano, Non-smooth critical point theory,, in, (2010), 295.   Google Scholar

[14]

D. Motreanu and P. D. Panagiotopoulos, Minimax theorems and qualitative properties of the solutions of hemivariational inequalities,, Nonconvex Optimization and its Applications, 29 (1999).   Google Scholar

[15]

A. Szulkin, Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 3 (1986), 77.   Google Scholar

[1]

Antonio Azzollini. On a functional satisfying a weak Palais-Smale condition. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1829-1840. doi: 10.3934/dcds.2014.34.1829

[2]

A. Azzollini. Erratum to: "On a functional satisfying a weak Palais-Smale condition". Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4987-4987. doi: 10.3934/dcds.2014.34.4987

[3]

Scott Nollet, Frederico Xavier. Global inversion via the Palais-Smale condition. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 17-28. doi: 10.3934/dcds.2002.8.17

[4]

Dorota Bors. Application of Mountain Pass Theorem to superlinear equations with fractional Laplacian controlled by distributed parameters and boundary data. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 29-43. doi: 10.3934/dcdsb.2018003

[5]

Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912

[6]

Dmitry Glotov, P. J. McKenna. Numerical mountain pass solutions of Ginzburg-Landau type equations. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1345-1359. doi: 10.3934/cpaa.2008.7.1345

[7]

Claudianor O. Alves, Giovany M. Figueiredo, Marcelo F. Furtado. Multiplicity of solutions for elliptic systems via local Mountain Pass method. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1745-1758. doi: 10.3934/cpaa.2009.8.1745

[8]

Christopher Grumiau, Marco Squassina, Christophe Troestler. On the Mountain-Pass algorithm for the quasi-linear Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1345-1360. doi: 10.3934/dcdsb.2013.18.1345

[9]

Vianney Perchet, Marc Quincampoix. A differential game on Wasserstein space. Application to weak approachability with partial monitoring. Journal of Dynamics & Games, 2019, 6 (1) : 65-85. doi: 10.3934/jdg.2019005

[10]

Duchao Liu, Beibei Wang, Peihao Zhao. On the trace regularity results of Musielak-Orlicz-Sobolev spaces in a bounded domain. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1643-1659. doi: 10.3934/cpaa.2016018

[11]

Dorina Mitrea, Marius Mitrea, Sylvie Monniaux. The Poisson problem for the exterior derivative operator with Dirichlet boundary condition in nonsmooth domains. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1295-1333. doi: 10.3934/cpaa.2008.7.1295

[12]

Martin Bauer, Philipp Harms, Peter W. Michor. Sobolev metrics on shape space of surfaces. Journal of Geometric Mechanics, 2011, 3 (4) : 389-438. doi: 10.3934/jgm.2011.3.389

[13]

Elismar R. Oliveira. Generic properties of Lagrangians on surfaces: The Kupka-Smale theorem. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 551-569. doi: 10.3934/dcds.2008.21.551

[14]

Delfim F. M. Torres. Proper extensions of Noether's symmetry theorem for nonsmooth extremals of the calculus of variations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 491-500. doi: 10.3934/cpaa.2004.3.491

[15]

Martins Bruveris. Completeness properties of Sobolev metrics on the space of curves. Journal of Geometric Mechanics, 2015, 7 (2) : 125-150. doi: 10.3934/jgm.2015.7.125

[16]

Angela Alberico, Andrea Cianchi, Luboš Pick, Lenka Slavíková. Sharp Sobolev type embeddings on the entire Euclidean space. Communications on Pure & Applied Analysis, 2018, 17 (5) : 2011-2037. doi: 10.3934/cpaa.2018096

[17]

Jingbo Dou, Ye Li. Liouville theorem for an integral system on the upper half space. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 155-171. doi: 10.3934/dcds.2015.35.155

[18]

Eric L. Grinberg, Haizhong Li. The Gauss-Bonnet-Grotemeyer Theorem in space forms. Inverse Problems & Imaging, 2010, 4 (4) : 655-664. doi: 10.3934/ipi.2010.4.655

[19]

Ovide Arino, Eva Sánchez. A saddle point theorem for functional state-dependent delay differential equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 687-722. doi: 10.3934/dcds.2005.12.687

[20]

Dariusz Idczak. A global implicit function theorem and its applications to functional equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2549-2556. doi: 10.3934/dcdsb.2014.19.2549

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]