\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A variational approach to a class of quasilinear elliptic equations not in divergence form

Abstract Related Papers Cited by
  • The aim of this paper is to use a variational approach in order to obtain the existence of non-trivial weak solutions of a quasilinear elliptic equation not in divergence form, in dimension $N=3$. Moreover, we prove that our solution is $C^{1, \alpha}(\overline\Omega)$ and also locally $C^{2, \alpha}(\overline\Omega)$ for a suitable $\alpha\in (0,1)$.
    Mathematics Subject Classification: Primary: 35J20, 35J65; Secondary: 35J25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    H. Amann and M. G. Crandall, On some existence theorems for semi-linear elliptic equations, Indiana Univ. Math. J., 27 (1978), 779-790.doi: 10.1512/iumj.1978.27.27050.

    [2]

    A. Ambrosetti and D. Arcoya, On a quasilinear problem at strong resonance, Topol. Methods Nonlinear Anal., 6 (1995), 255-264.

    [3]

    A. Ambrosetti and A. Malchiodi, "Nonlinear Analysis and Semilinear Elliptic Problems," Cambridge Studies in Advanced Mathematics, 104, Cambridge University Press, Cambridge, 2007.

    [4]

    A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381.doi: 10.1016/0022-1236(73)90051-7.

    [5]

    D. Arcoya and P. J. Martinez-Aparicio, Quasilinear equations with natural growth, Rev. Mat. Iberoam., 24 (2008), 597-616.

    [6]

    L. Boccardo, Dirichlet problems with singular and gradient quadratic lower order terms, ESAIM Control Optim. Calc. Var., 14 (2008), 411-426.doi: 10.1051/cocv:2008031.

    [7]

    L. Boccardo and T. Gallouët, Strongly nonlinear elliptic equations having natural growth terms and $L^1$ data, Nonlinear Anal., 19 (1992), 573-579.doi: 10.1016/0362-546X(92)90022-7.

    [8]

    H. Brézis and R. E. L. Turner, On a class of superlinear elliptic problems, Comm. Partial Differential Equations, 2 (1977), 601-614.

    [9]

    D. De Figueiredo, M. Girardi and M. Matzeu, Semilinear elliptic equations with dependence on the gradient via mountain-pass techniques, Differential Integral Equations, 17 (2004), 119-126.

    [10]

    L. C. Evans, "Partial Differential Equations," Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, RI, 1998.

    [11]

    D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," reprint of the 1998 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001.

    [12]

    M. Girardi and M. Matzeu, Positive and negative solutions of a quasi-linear elliptic equation by a Mountain Pass method and truncature techniques, Nonlinear Anal., 59 (2004), 199-210.

    [13]

    M. Girardi and M. Matzeu, A compactness result for quasilinear elliptic equations by Mountain Pass techniques, Rend. Mat. Appl. (7), 29 (2009), 83-95.

    [14]

    S. Pohožaev, Equations of the type $\Delta u=f(x,u,Du)$, Mat. Sb. (N.S.), 113(155) (1980), 324-338, 351.

    [15]

    R. ServadeiA semilinear elliptic PDE not in divergence form via variational methods, J. Math. Anal. Appl., in press.

    [16]

    J. B. M. Xavier, Some existence theorems for equations of the form $-\Delta u=f(x,u,Du)$, Nonlinear Anal., 15 (1990), 59-67.

    [17]

    Z. Yan, A note on the solvability in $W^{2, p}(\Omega)$ for the equation $-\Delta u=f(x,u,Du)$, Nonlinear Anal., 24 (1995), 1413-1416.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(269) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return