August  2012, 5(4): 845-855. doi: 10.3934/dcdss.2012.5.845

Multiplicity of solutions for variable exponent Dirichlet problem with concave term

1. 

Ben Gurion University of the Negev, Department of Mathematics, Be'er Sheva 84105

Received  January 2011 Revised  April 2011 Published  November 2011

We consider a nonlinear Dirichlet boundary value problem involving the $p(x)$-Laplacian and a concave term. Our main result shows the existence of at least three nontrivial solutions. We use truncation techniques and the method of sub- and supersolutions.
Citation: V. V. Motreanu. Multiplicity of solutions for variable exponent Dirichlet problem with concave term. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 845-855. doi: 10.3934/dcdss.2012.5.845
References:
[1]

D. Averna, S. A. Marano and D. Motreanu, Multiple solutions for a Dirichlet problem with $p$-Laplacian and set-valued nonlinearity,, Bull. Aust. Math. Soc., 77 (2008), 285.  doi: 10.1017/S0004972708000282.  Google Scholar

[2]

K.-C. Chang, "Infinite-Dimensional Morse Theory and Multiple Solution Problems,", Progress in Nonlinear Differential Equations and their Applications, 6 (1993).   Google Scholar

[3]

S. Carl, V. K. Le and D. Motreanu, "Nonsmooth Variational Problems and Their Inequalities. Comparison Principles and Applications,", Springer Monographs in Mathematics, (2007).   Google Scholar

[4]

S. Carl and D. Motreanu, Constant-sign and sign-changing solutions for nonlinear eigenvalue problems,, Nonlinear Anal., 68 (2008), 2668.  doi: 10.1016/j.na.2007.02.013.  Google Scholar

[5]

X. Fan, Global $C^{1,\alpha}$ regularity for variable exponent elliptic equations in divergence form,, J. Differential Equations, 235 (2007), 397.  doi: 10.1016/j.jde.2007.01.008.  Google Scholar

[6]

X. Fan, On the sub-supersolution method for $p(x)$-Laplacian equations,, J. Math. Anal. Appl., 330 (2007), 665.  doi: 10.1016/j.jmaa.2006.07.093.  Google Scholar

[7]

X. Fan and D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$,, J. Math. Anal. Appl., 263 (2001), 424.  doi: 10.1006/jmaa.2000.7617.  Google Scholar

[8]

X. Fan, J. Shen and D. Zhao, Sobolev embedding theorems for spaces $W^{k,p(x)}(\Omega)$,, J. Math. Anal. Appl., 262 (2001), 749.  doi: 10.1006/jmaa.2001.7618.  Google Scholar

[9]

X. Fan, Y. Z. Zhao and Q. H. Zhang, A strong maximum principle for p(x)-Laplace equations,, Chinese J. Contemp. Math., 24 (2003), 277.   Google Scholar

[10]

O. Kováčik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{k,p(x)}$,, Czechoslovak Math. J., 41(116) (1991), 592.   Google Scholar

[11]

V. Maz'ja, "Sobolev Spaces,", Translated from the Russian by T. O. Shaposhnikova, (1985).   Google Scholar

[12]

D. Motreanu, Three solutions with precise sign properties for systems of quasilinear elliptic equations,, Discrete Contin. Dyn. Syst. Ser. S, ().   Google Scholar

[13]

D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, A unified approach for multiple constant sign and nodal solutions,, Adv. Differential Equations, 12 (2007), 1363.   Google Scholar

[14]

D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, Multiple constant sign and nodal solutions for nonlinear Neumann eigenvalue problems,, Ann. Sc. Norm. Super. Pisa Cl. Sci., 10 (2011), 729.   Google Scholar

[15]

D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, On $p$-Laplace equations with concave terms and asymmetric perturbations,, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), 171.   Google Scholar

[16]

D. Motreanu and N. S. Papageorgiou, Multiple solutions for nonlinear Neumann problems driven by a nonhomogeneous differential operator,, Proc. Amer. Math. Soc., 139 (2011), 3527.  doi: 10.1090/S0002-9939-2011-10884-0.  Google Scholar

[17]

D. Motreanu and Z. Zhang, Constant sign and sign changing solutions for systems of quasilinear elliptic equations,, Set-Valued Anal., 19 (2011), 255.  doi: 10.1007/s11228-010-0142-z.  Google Scholar

[18]

N. S. Papageorgiou and E. Rocha, A multiplicity theorem for a variable exponent Dirichlet problem,, Glasg. Math. J., 50 (2008), 335.  doi: 10.1017/S0017089508004242.  Google Scholar

show all references

References:
[1]

D. Averna, S. A. Marano and D. Motreanu, Multiple solutions for a Dirichlet problem with $p$-Laplacian and set-valued nonlinearity,, Bull. Aust. Math. Soc., 77 (2008), 285.  doi: 10.1017/S0004972708000282.  Google Scholar

[2]

K.-C. Chang, "Infinite-Dimensional Morse Theory and Multiple Solution Problems,", Progress in Nonlinear Differential Equations and their Applications, 6 (1993).   Google Scholar

[3]

S. Carl, V. K. Le and D. Motreanu, "Nonsmooth Variational Problems and Their Inequalities. Comparison Principles and Applications,", Springer Monographs in Mathematics, (2007).   Google Scholar

[4]

S. Carl and D. Motreanu, Constant-sign and sign-changing solutions for nonlinear eigenvalue problems,, Nonlinear Anal., 68 (2008), 2668.  doi: 10.1016/j.na.2007.02.013.  Google Scholar

[5]

X. Fan, Global $C^{1,\alpha}$ regularity for variable exponent elliptic equations in divergence form,, J. Differential Equations, 235 (2007), 397.  doi: 10.1016/j.jde.2007.01.008.  Google Scholar

[6]

X. Fan, On the sub-supersolution method for $p(x)$-Laplacian equations,, J. Math. Anal. Appl., 330 (2007), 665.  doi: 10.1016/j.jmaa.2006.07.093.  Google Scholar

[7]

X. Fan and D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$,, J. Math. Anal. Appl., 263 (2001), 424.  doi: 10.1006/jmaa.2000.7617.  Google Scholar

[8]

X. Fan, J. Shen and D. Zhao, Sobolev embedding theorems for spaces $W^{k,p(x)}(\Omega)$,, J. Math. Anal. Appl., 262 (2001), 749.  doi: 10.1006/jmaa.2001.7618.  Google Scholar

[9]

X. Fan, Y. Z. Zhao and Q. H. Zhang, A strong maximum principle for p(x)-Laplace equations,, Chinese J. Contemp. Math., 24 (2003), 277.   Google Scholar

[10]

O. Kováčik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{k,p(x)}$,, Czechoslovak Math. J., 41(116) (1991), 592.   Google Scholar

[11]

V. Maz'ja, "Sobolev Spaces,", Translated from the Russian by T. O. Shaposhnikova, (1985).   Google Scholar

[12]

D. Motreanu, Three solutions with precise sign properties for systems of quasilinear elliptic equations,, Discrete Contin. Dyn. Syst. Ser. S, ().   Google Scholar

[13]

D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, A unified approach for multiple constant sign and nodal solutions,, Adv. Differential Equations, 12 (2007), 1363.   Google Scholar

[14]

D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, Multiple constant sign and nodal solutions for nonlinear Neumann eigenvalue problems,, Ann. Sc. Norm. Super. Pisa Cl. Sci., 10 (2011), 729.   Google Scholar

[15]

D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, On $p$-Laplace equations with concave terms and asymmetric perturbations,, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), 171.   Google Scholar

[16]

D. Motreanu and N. S. Papageorgiou, Multiple solutions for nonlinear Neumann problems driven by a nonhomogeneous differential operator,, Proc. Amer. Math. Soc., 139 (2011), 3527.  doi: 10.1090/S0002-9939-2011-10884-0.  Google Scholar

[17]

D. Motreanu and Z. Zhang, Constant sign and sign changing solutions for systems of quasilinear elliptic equations,, Set-Valued Anal., 19 (2011), 255.  doi: 10.1007/s11228-010-0142-z.  Google Scholar

[18]

N. S. Papageorgiou and E. Rocha, A multiplicity theorem for a variable exponent Dirichlet problem,, Glasg. Math. J., 50 (2008), 335.  doi: 10.1017/S0017089508004242.  Google Scholar

[1]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[2]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[3]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[4]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[5]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[6]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[7]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[8]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[9]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[10]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[11]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[12]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[13]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[14]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[15]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[16]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[17]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[18]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[19]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[20]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (52)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]