-
Previous Article
A priori bounds for weak solutions to elliptic equations with nonstandard growth
- DCDS-S Home
- This Issue
-
Next Article
Multiplicity of solutions for variable exponent Dirichlet problem with concave term
Noncoercive elliptic equations with subcritical growth
1. | Institute of Mathematics “Simion Stoilow” of the Romanian Academy, P.O. Box 1-764, 014700 Bucharest, Romania, Department of Mathematics, University of Craiova, 200585 Craiova, Romania |
References:
[1] |
A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications,, J. Functional Analysis, 14 (1973), 349.
doi: 10.1016/0022-1236(73)90051-7. |
[2] |
G. Bonanno and S. A. Marano, Positive solutions of elliptic equations with discontinuous nonlinearities,, Topol. Methods Nonlinear Anal., 8 (1996), 263.
|
[3] |
H. Brezis, "Analyse Fonctionnelle. Théorie et Applications,", Collection Mathématiques Appliqueées pour la Maîtrise, (1983).
|
[4] |
H. Brezis, Periodic solutions of nonlinear vibrating strings and duality principles,, Bull. Amer. Math. Soc., 8 (1983), 409.
doi: 10.1090/S0273-0979-1983-15105-4. |
[5] |
H. Brezis and L. Nirenberg, Remarks on finding critical points,, Comm. Pure Appl. Math., 44 (1991), 939.
doi: 10.1002/cpa.3160440808. |
[6] |
S. Carl and D. Motreanu, Constant-sign and sign-changing solutions for nonlinear eigenvalue problems,, Nonlinear Anal., 68 (2008), 2668.
doi: 10.1016/j.na.2007.02.013. |
[7] |
F. Clarke, A classical variational principle for periodic Hamiltonian trajectories,, Proc. Amer. Math. Soc., 76 (1979), 186.
|
[8] |
F. Clarke, Periodic solutions to Hamiltonian inclusions,, J. Differential Equations, 40 (1981), 1.
doi: 10.1016/0022-0396(81)90007-3. |
[9] |
I. Ekeland, A perturbation theory near convex Hamiltonian systems,, J. Differential Equations, 50 (1983), 407.
doi: 10.1016/0022-0396(83)90069-4. |
[10] |
R. Filippucci, P. Pucci and F. Robert, On a $p$-Laplace equation with multiple critical nonlinearities,, J. Math. Pures Appl., 91 (2009), 156.
doi: 10.1016/j.matpur.2008.09.008. |
[11] |
N. Ghoussoub and D. Preiss, A general mountain pass principle for locating and classifying critical points,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 (1989), 321.
|
[12] |
D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Reprint of the 1998 edition, (1998).
|
[13] |
A. Kristály, V. Rădulescu and Cs. Varga, "Variational Principles in Mathematical Physics, Geometry, and Economics. Qualitative Analysis of Nonlinear Equations and Unilateral Problems,", Encyclopedia of Mathematics and its Applications, 136 (2010).
|
[14] |
E. M. Landesman and A. C. Lazer, Nonlinear perturbations of linear elliptic boundary value problems at resonance,, J. Math. Mech., 19 (): 609.
|
[15] |
S. A. Marano and D. Motreanu, Existence of two nontrivial solutions for a class of elliptic eigenvalue problems,, Arch. Math. (Basel), 75 (2000), 53.
|
[16] |
R. Palais, Lusternik-Schnirelmann theory on Banach manifolds,, Topology, 5 (1966), 115.
doi: 10.1016/0040-9383(66)90013-9. |
[17] |
R. Palais and S. Smale, A generalized Morse theory,, Bull. Amer. Math. Soc., 70 (1964), 165.
doi: 10.1090/S0002-9904-1964-11062-4. |
[18] |
P. Pucci and V. Rădulescu, The impact of the mountain pass theory in nonlinear analysis: A mathematical survey,, Boll. Unione Mat. Ital., IX (2010), 543. Google Scholar |
[19] |
P. Pucci and J. Serrin, Extensions of the mountain pass theorem,, J. Funct. Anal., 59 (1984), 185.
doi: 10.1016/0022-1236(84)90072-7. |
[20] |
P. Pucci and J. Serrin, A mountain pass theorem,, J. Differential Equations, 60 (1985), 142.
doi: 10.1016/0022-0396(85)90125-1. |
[21] |
P. Pucci and J. Serrin, The structure of the critical set in the mountain pass theorem,, Trans. Amer. Math. Soc., 299 (1987), 115.
doi: 10.1090/S0002-9947-1987-0869402-1. |
[22] |
V. Rădulescu, "Qualitative Analysis of Nonlinear Elliptic Partial Differential Equations: Monotonicity, Analytic, and Variational Methods,", Contemporary Mathematics and Its Applications, 6 (2008).
|
[23] |
V. Rădulescu, Remarks on a limiting case in the treatment of nonlinear problems with mountain pass geometry,, Universitatis Babes-Bolyai Mathematica, LV (2010), 99. Google Scholar |
[24] |
J. Toland, A duality principle for nonconvex optimisation and the calculus of variations,, Arch. Rational Mech. Anal., 71 (1979), 41.
doi: 10.1007/BF00250669. |
[25] |
X. M. Zheng, Un résultat de non-existence de solution positive pour une équation elliptique,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 7 (1990), 91.
|
show all references
References:
[1] |
A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications,, J. Functional Analysis, 14 (1973), 349.
doi: 10.1016/0022-1236(73)90051-7. |
[2] |
G. Bonanno and S. A. Marano, Positive solutions of elliptic equations with discontinuous nonlinearities,, Topol. Methods Nonlinear Anal., 8 (1996), 263.
|
[3] |
H. Brezis, "Analyse Fonctionnelle. Théorie et Applications,", Collection Mathématiques Appliqueées pour la Maîtrise, (1983).
|
[4] |
H. Brezis, Periodic solutions of nonlinear vibrating strings and duality principles,, Bull. Amer. Math. Soc., 8 (1983), 409.
doi: 10.1090/S0273-0979-1983-15105-4. |
[5] |
H. Brezis and L. Nirenberg, Remarks on finding critical points,, Comm. Pure Appl. Math., 44 (1991), 939.
doi: 10.1002/cpa.3160440808. |
[6] |
S. Carl and D. Motreanu, Constant-sign and sign-changing solutions for nonlinear eigenvalue problems,, Nonlinear Anal., 68 (2008), 2668.
doi: 10.1016/j.na.2007.02.013. |
[7] |
F. Clarke, A classical variational principle for periodic Hamiltonian trajectories,, Proc. Amer. Math. Soc., 76 (1979), 186.
|
[8] |
F. Clarke, Periodic solutions to Hamiltonian inclusions,, J. Differential Equations, 40 (1981), 1.
doi: 10.1016/0022-0396(81)90007-3. |
[9] |
I. Ekeland, A perturbation theory near convex Hamiltonian systems,, J. Differential Equations, 50 (1983), 407.
doi: 10.1016/0022-0396(83)90069-4. |
[10] |
R. Filippucci, P. Pucci and F. Robert, On a $p$-Laplace equation with multiple critical nonlinearities,, J. Math. Pures Appl., 91 (2009), 156.
doi: 10.1016/j.matpur.2008.09.008. |
[11] |
N. Ghoussoub and D. Preiss, A general mountain pass principle for locating and classifying critical points,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 (1989), 321.
|
[12] |
D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Reprint of the 1998 edition, (1998).
|
[13] |
A. Kristály, V. Rădulescu and Cs. Varga, "Variational Principles in Mathematical Physics, Geometry, and Economics. Qualitative Analysis of Nonlinear Equations and Unilateral Problems,", Encyclopedia of Mathematics and its Applications, 136 (2010).
|
[14] |
E. M. Landesman and A. C. Lazer, Nonlinear perturbations of linear elliptic boundary value problems at resonance,, J. Math. Mech., 19 (): 609.
|
[15] |
S. A. Marano and D. Motreanu, Existence of two nontrivial solutions for a class of elliptic eigenvalue problems,, Arch. Math. (Basel), 75 (2000), 53.
|
[16] |
R. Palais, Lusternik-Schnirelmann theory on Banach manifolds,, Topology, 5 (1966), 115.
doi: 10.1016/0040-9383(66)90013-9. |
[17] |
R. Palais and S. Smale, A generalized Morse theory,, Bull. Amer. Math. Soc., 70 (1964), 165.
doi: 10.1090/S0002-9904-1964-11062-4. |
[18] |
P. Pucci and V. Rădulescu, The impact of the mountain pass theory in nonlinear analysis: A mathematical survey,, Boll. Unione Mat. Ital., IX (2010), 543. Google Scholar |
[19] |
P. Pucci and J. Serrin, Extensions of the mountain pass theorem,, J. Funct. Anal., 59 (1984), 185.
doi: 10.1016/0022-1236(84)90072-7. |
[20] |
P. Pucci and J. Serrin, A mountain pass theorem,, J. Differential Equations, 60 (1985), 142.
doi: 10.1016/0022-0396(85)90125-1. |
[21] |
P. Pucci and J. Serrin, The structure of the critical set in the mountain pass theorem,, Trans. Amer. Math. Soc., 299 (1987), 115.
doi: 10.1090/S0002-9947-1987-0869402-1. |
[22] |
V. Rădulescu, "Qualitative Analysis of Nonlinear Elliptic Partial Differential Equations: Monotonicity, Analytic, and Variational Methods,", Contemporary Mathematics and Its Applications, 6 (2008).
|
[23] |
V. Rădulescu, Remarks on a limiting case in the treatment of nonlinear problems with mountain pass geometry,, Universitatis Babes-Bolyai Mathematica, LV (2010), 99. Google Scholar |
[24] |
J. Toland, A duality principle for nonconvex optimisation and the calculus of variations,, Arch. Rational Mech. Anal., 71 (1979), 41.
doi: 10.1007/BF00250669. |
[25] |
X. M. Zheng, Un résultat de non-existence de solution positive pour une équation elliptique,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 7 (1990), 91.
|
[1] |
Claudianor O. Alves, Giovany M. Figueiredo, Marcelo F. Furtado. Multiplicity of solutions for elliptic systems via local Mountain Pass method. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1745-1758. doi: 10.3934/cpaa.2009.8.1745 |
[2] |
Khadijah Sharaf. A perturbation result for a critical elliptic equation with zero Dirichlet boundary condition. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1691-1706. doi: 10.3934/dcds.2017070 |
[3] |
Christopher Grumiau, Marco Squassina, Christophe Troestler. On the Mountain-Pass algorithm for the quasi-linear Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1345-1360. doi: 10.3934/dcdsb.2013.18.1345 |
[4] |
Dorota Bors. Application of Mountain Pass Theorem to superlinear equations with fractional Laplacian controlled by distributed parameters and boundary data. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 29-43. doi: 10.3934/dcdsb.2018003 |
[5] |
Tsung-Fang Wu. Multiplicity of positive solutions for a semilinear elliptic equation in $R_+^N$ with nonlinear boundary condition. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1675-1696. doi: 10.3934/cpaa.2010.9.1675 |
[6] |
Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912 |
[7] |
Patrick Winkert. Multiplicity results for a class of elliptic problems with nonlinear boundary condition. Communications on Pure & Applied Analysis, 2013, 12 (2) : 785-802. doi: 10.3934/cpaa.2013.12.785 |
[8] |
Dmitry Glotov, P. J. McKenna. Numerical mountain pass solutions of Ginzburg-Landau type equations. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1345-1359. doi: 10.3934/cpaa.2008.7.1345 |
[9] |
Hongwei Zhang, Qingying Hu. Asymptotic behavior and nonexistence of wave equation with nonlinear boundary condition. Communications on Pure & Applied Analysis, 2005, 4 (4) : 861-869. doi: 10.3934/cpaa.2005.4.861 |
[10] |
Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71 |
[11] |
Marek Fila, Kazuhiro Ishige, Tatsuki Kawakami. Convergence to the Poisson kernel for the Laplace equation with a nonlinear dynamical boundary condition. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1285-1301. doi: 10.3934/cpaa.2012.11.1285 |
[12] |
Kazuhiro Ishige, Ryuichi Sato. Heat equation with a nonlinear boundary condition and uniformly local $L^r$ spaces. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2627-2652. doi: 10.3934/dcds.2016.36.2627 |
[13] |
Andrzej Nowakowski. Variational approach to stability of semilinear wave equation with nonlinear boundary conditions. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2603-2616. doi: 10.3934/dcdsb.2014.19.2603 |
[14] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[15] |
Maicon Sônego. Stable solution induced by domain geometry in the heat equation with nonlinear boundary conditions on surfaces of revolution. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 5981-5988. doi: 10.3934/dcdsb.2019116 |
[16] |
Dorina Mitrea, Marius Mitrea, Sylvie Monniaux. The Poisson problem for the exterior derivative operator with Dirichlet boundary condition in nonsmooth domains. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1295-1333. doi: 10.3934/cpaa.2008.7.1295 |
[17] |
Yueding Yuan, Zhiming Guo, Moxun Tang. A nonlocal diffusion population model with age structure and Dirichlet boundary condition. Communications on Pure & Applied Analysis, 2015, 14 (5) : 2095-2115. doi: 10.3934/cpaa.2015.14.2095 |
[18] |
Yu-Feng Sun, Zheng Zeng, Jie Song. Quasilinear iterative method for the boundary value problem of nonlinear fractional differential equation. Numerical Algebra, Control & Optimization, 2019, 0 (0) : 0-0. doi: 10.3934/naco.2019045 |
[19] |
Alexander Gladkov. Blow-up problem for semilinear heat equation with nonlinear nonlocal Neumann boundary condition. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2053-2068. doi: 10.3934/cpaa.2017101 |
[20] |
Minoru Murai, Kunimochi Sakamoto, Shoji Yotsutani. Representation formula for traveling waves to a derivative nonlinear Schrödinger equation with the periodic boundary condition. Conference Publications, 2015, 2015 (special) : 878-900. doi: 10.3934/proc.2015.0878 |
2018 Impact Factor: 0.545
Tools
Metrics
Other articles
by authors
[Back to Top]