August  2012, 5(4): 857-864. doi: 10.3934/dcdss.2012.5.857

Noncoercive elliptic equations with subcritical growth

1. 

Institute of Mathematics “Simion Stoilow” of the Romanian Academy, P.O. Box 1-764, 014700 Bucharest, Romania, Department of Mathematics, University of Craiova, 200585 Craiova, Romania

Received  January 2011 Revised  February 2011 Published  November 2011

We study a class of nonlinear elliptic equations with subcritical growth and Dirichlet boundary condition. Our purpose in the present paper is threefold: (i) to establish the effect of a small perturbation in a nonlinear coercive problem; (ii) to study a Dirichlet elliptic problem with lack of coercivity; and (iii) to consider the case of a monotone nonlinear term with subcritical growth. This last feature enables us to use a dual variational method introduced by Clarke and Ekeland in the framework of Hamiltonian systems associated with a convex Hamiltonian and applied by Brezis to the qualitative analysis of large classes of nonlinear partial differential equations. Connections with the mountain pass theorem are also made in the present paper.
Citation: Vicenţiu D. Rădulescu. Noncoercive elliptic equations with subcritical growth. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 857-864. doi: 10.3934/dcdss.2012.5.857
References:
[1]

A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications,, J. Functional Analysis, 14 (1973), 349.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[2]

G. Bonanno and S. A. Marano, Positive solutions of elliptic equations with discontinuous nonlinearities,, Topol. Methods Nonlinear Anal., 8 (1996), 263.   Google Scholar

[3]

H. Brezis, "Analyse Fonctionnelle. Théorie et Applications,", Collection Mathématiques Appliqueées pour la Maîtrise, (1983).   Google Scholar

[4]

H. Brezis, Periodic solutions of nonlinear vibrating strings and duality principles,, Bull. Amer. Math. Soc., 8 (1983), 409.  doi: 10.1090/S0273-0979-1983-15105-4.  Google Scholar

[5]

H. Brezis and L. Nirenberg, Remarks on finding critical points,, Comm. Pure Appl. Math., 44 (1991), 939.  doi: 10.1002/cpa.3160440808.  Google Scholar

[6]

S. Carl and D. Motreanu, Constant-sign and sign-changing solutions for nonlinear eigenvalue problems,, Nonlinear Anal., 68 (2008), 2668.  doi: 10.1016/j.na.2007.02.013.  Google Scholar

[7]

F. Clarke, A classical variational principle for periodic Hamiltonian trajectories,, Proc. Amer. Math. Soc., 76 (1979), 186.   Google Scholar

[8]

F. Clarke, Periodic solutions to Hamiltonian inclusions,, J. Differential Equations, 40 (1981), 1.  doi: 10.1016/0022-0396(81)90007-3.  Google Scholar

[9]

I. Ekeland, A perturbation theory near convex Hamiltonian systems,, J. Differential Equations, 50 (1983), 407.  doi: 10.1016/0022-0396(83)90069-4.  Google Scholar

[10]

R. Filippucci, P. Pucci and F. Robert, On a $p$-Laplace equation with multiple critical nonlinearities,, J. Math. Pures Appl., 91 (2009), 156.  doi: 10.1016/j.matpur.2008.09.008.  Google Scholar

[11]

N. Ghoussoub and D. Preiss, A general mountain pass principle for locating and classifying critical points,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 (1989), 321.   Google Scholar

[12]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Reprint of the 1998 edition, (1998).   Google Scholar

[13]

A. Kristály, V. Rădulescu and Cs. Varga, "Variational Principles in Mathematical Physics, Geometry, and Economics. Qualitative Analysis of Nonlinear Equations and Unilateral Problems,", Encyclopedia of Mathematics and its Applications, 136 (2010).   Google Scholar

[14]

E. M. Landesman and A. C. Lazer, Nonlinear perturbations of linear elliptic boundary value problems at resonance,, J. Math. Mech., 19 (): 609.   Google Scholar

[15]

S. A. Marano and D. Motreanu, Existence of two nontrivial solutions for a class of elliptic eigenvalue problems,, Arch. Math. (Basel), 75 (2000), 53.   Google Scholar

[16]

R. Palais, Lusternik-Schnirelmann theory on Banach manifolds,, Topology, 5 (1966), 115.  doi: 10.1016/0040-9383(66)90013-9.  Google Scholar

[17]

R. Palais and S. Smale, A generalized Morse theory,, Bull. Amer. Math. Soc., 70 (1964), 165.  doi: 10.1090/S0002-9904-1964-11062-4.  Google Scholar

[18]

P. Pucci and V. Rădulescu, The impact of the mountain pass theory in nonlinear analysis: A mathematical survey,, Boll. Unione Mat. Ital., IX (2010), 543.   Google Scholar

[19]

P. Pucci and J. Serrin, Extensions of the mountain pass theorem,, J. Funct. Anal., 59 (1984), 185.  doi: 10.1016/0022-1236(84)90072-7.  Google Scholar

[20]

P. Pucci and J. Serrin, A mountain pass theorem,, J. Differential Equations, 60 (1985), 142.  doi: 10.1016/0022-0396(85)90125-1.  Google Scholar

[21]

P. Pucci and J. Serrin, The structure of the critical set in the mountain pass theorem,, Trans. Amer. Math. Soc., 299 (1987), 115.  doi: 10.1090/S0002-9947-1987-0869402-1.  Google Scholar

[22]

V. Rădulescu, "Qualitative Analysis of Nonlinear Elliptic Partial Differential Equations: Monotonicity, Analytic, and Variational Methods,", Contemporary Mathematics and Its Applications, 6 (2008).   Google Scholar

[23]

V. Rădulescu, Remarks on a limiting case in the treatment of nonlinear problems with mountain pass geometry,, Universitatis Babes-Bolyai Mathematica, LV (2010), 99.   Google Scholar

[24]

J. Toland, A duality principle for nonconvex optimisation and the calculus of variations,, Arch. Rational Mech. Anal., 71 (1979), 41.  doi: 10.1007/BF00250669.  Google Scholar

[25]

X. M. Zheng, Un résultat de non-existence de solution positive pour une équation elliptique,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 7 (1990), 91.   Google Scholar

show all references

References:
[1]

A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications,, J. Functional Analysis, 14 (1973), 349.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[2]

G. Bonanno and S. A. Marano, Positive solutions of elliptic equations with discontinuous nonlinearities,, Topol. Methods Nonlinear Anal., 8 (1996), 263.   Google Scholar

[3]

H. Brezis, "Analyse Fonctionnelle. Théorie et Applications,", Collection Mathématiques Appliqueées pour la Maîtrise, (1983).   Google Scholar

[4]

H. Brezis, Periodic solutions of nonlinear vibrating strings and duality principles,, Bull. Amer. Math. Soc., 8 (1983), 409.  doi: 10.1090/S0273-0979-1983-15105-4.  Google Scholar

[5]

H. Brezis and L. Nirenberg, Remarks on finding critical points,, Comm. Pure Appl. Math., 44 (1991), 939.  doi: 10.1002/cpa.3160440808.  Google Scholar

[6]

S. Carl and D. Motreanu, Constant-sign and sign-changing solutions for nonlinear eigenvalue problems,, Nonlinear Anal., 68 (2008), 2668.  doi: 10.1016/j.na.2007.02.013.  Google Scholar

[7]

F. Clarke, A classical variational principle for periodic Hamiltonian trajectories,, Proc. Amer. Math. Soc., 76 (1979), 186.   Google Scholar

[8]

F. Clarke, Periodic solutions to Hamiltonian inclusions,, J. Differential Equations, 40 (1981), 1.  doi: 10.1016/0022-0396(81)90007-3.  Google Scholar

[9]

I. Ekeland, A perturbation theory near convex Hamiltonian systems,, J. Differential Equations, 50 (1983), 407.  doi: 10.1016/0022-0396(83)90069-4.  Google Scholar

[10]

R. Filippucci, P. Pucci and F. Robert, On a $p$-Laplace equation with multiple critical nonlinearities,, J. Math. Pures Appl., 91 (2009), 156.  doi: 10.1016/j.matpur.2008.09.008.  Google Scholar

[11]

N. Ghoussoub and D. Preiss, A general mountain pass principle for locating and classifying critical points,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 (1989), 321.   Google Scholar

[12]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Reprint of the 1998 edition, (1998).   Google Scholar

[13]

A. Kristály, V. Rădulescu and Cs. Varga, "Variational Principles in Mathematical Physics, Geometry, and Economics. Qualitative Analysis of Nonlinear Equations and Unilateral Problems,", Encyclopedia of Mathematics and its Applications, 136 (2010).   Google Scholar

[14]

E. M. Landesman and A. C. Lazer, Nonlinear perturbations of linear elliptic boundary value problems at resonance,, J. Math. Mech., 19 (): 609.   Google Scholar

[15]

S. A. Marano and D. Motreanu, Existence of two nontrivial solutions for a class of elliptic eigenvalue problems,, Arch. Math. (Basel), 75 (2000), 53.   Google Scholar

[16]

R. Palais, Lusternik-Schnirelmann theory on Banach manifolds,, Topology, 5 (1966), 115.  doi: 10.1016/0040-9383(66)90013-9.  Google Scholar

[17]

R. Palais and S. Smale, A generalized Morse theory,, Bull. Amer. Math. Soc., 70 (1964), 165.  doi: 10.1090/S0002-9904-1964-11062-4.  Google Scholar

[18]

P. Pucci and V. Rădulescu, The impact of the mountain pass theory in nonlinear analysis: A mathematical survey,, Boll. Unione Mat. Ital., IX (2010), 543.   Google Scholar

[19]

P. Pucci and J. Serrin, Extensions of the mountain pass theorem,, J. Funct. Anal., 59 (1984), 185.  doi: 10.1016/0022-1236(84)90072-7.  Google Scholar

[20]

P. Pucci and J. Serrin, A mountain pass theorem,, J. Differential Equations, 60 (1985), 142.  doi: 10.1016/0022-0396(85)90125-1.  Google Scholar

[21]

P. Pucci and J. Serrin, The structure of the critical set in the mountain pass theorem,, Trans. Amer. Math. Soc., 299 (1987), 115.  doi: 10.1090/S0002-9947-1987-0869402-1.  Google Scholar

[22]

V. Rădulescu, "Qualitative Analysis of Nonlinear Elliptic Partial Differential Equations: Monotonicity, Analytic, and Variational Methods,", Contemporary Mathematics and Its Applications, 6 (2008).   Google Scholar

[23]

V. Rădulescu, Remarks on a limiting case in the treatment of nonlinear problems with mountain pass geometry,, Universitatis Babes-Bolyai Mathematica, LV (2010), 99.   Google Scholar

[24]

J. Toland, A duality principle for nonconvex optimisation and the calculus of variations,, Arch. Rational Mech. Anal., 71 (1979), 41.  doi: 10.1007/BF00250669.  Google Scholar

[25]

X. M. Zheng, Un résultat de non-existence de solution positive pour une équation elliptique,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 7 (1990), 91.   Google Scholar

[1]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[2]

Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control & Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034

[3]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[4]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[5]

Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230

[6]

Tomáš Bodnár, Philippe Fraunié, Petr Knobloch, Hynek Řezníček. Numerical evaluation of artificial boundary condition for wall-bounded stably stratified flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 785-801. doi: 10.3934/dcdss.2020333

[7]

Anna Anop, Robert Denk, Aleksandr Murach. Elliptic problems with rough boundary data in generalized Sobolev spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020286

[8]

Hongbo Guan, Yong Yang, Huiqing Zhu. A nonuniform anisotropic FEM for elliptic boundary layer optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1711-1722. doi: 10.3934/dcdsb.2020179

[9]

Lateef Olakunle Jolaoso, Maggie Aphane. Bregman subgradient extragradient method with monotone self-adjustment stepsize for solving pseudo-monotone variational inequalities and fixed point problems. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020178

[10]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020052

[11]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[12]

Waixiang Cao, Lueling Jia, Zhimin Zhang. A $ C^1 $ Petrov-Galerkin method and Gauss collocation method for 1D general elliptic problems and superconvergence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 81-105. doi: 10.3934/dcdsb.2020327

[13]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[14]

Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097

[15]

Ke Su, Yumeng Lin, Chun Xu. A new adaptive method to nonlinear semi-infinite programming. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021012

[16]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[17]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[18]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[19]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[20]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (30)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]