October  2012, 5(5): 925-937. doi: 10.3934/dcdss.2012.5.925

The spectrum of travelling wave solutions to the Sine-Gordon equation

1. 

Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States

2. 

Department of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia

Received  October 2010 Revised  September 2011 Published  January 2012

We investigate the spectrum of the linear operator coming from the sine-Gordon equation linearized about a travelling kink-wave solution. Using various geometric techniques as well as some elementary methods from ODE theory, we find that the point spectrum of such an operator is purely imaginary provided the wave speed $c$ of the travelling wave is not $\pm 1$. We then compute the essential spectrum of the same operator.
Citation: Christopher K. R. T. Jones, Robert Marangell. The spectrum of travelling wave solutions to the Sine-Gordon equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 925-937. doi: 10.3934/dcdss.2012.5.925
References:
[1]

A. Abbondandolo, "Morse Theory for Hamiltonian Systems,", Chapman & Hall/CRC Research Notes in Mathematics, 425 (2001).

[2]

V. I. Arnol'd, On a characteristic class entering into conditions of quantization,, Func. Anal. Appl., 1 (1967), 1. doi: 10.1007/BF01075861.

[3]

P. Bates and C. K. R. T. Jones, Invariant manifolds for semilinear partial differential equations,, in, 2 (1989).

[4]

J. C. Bronski and M. A. Johnson, Krein signatures for the Faddeev-Takhtajan eigenvalue problem,, Communications in Mathematical Physics, 288 (2009), 821. doi: 10.1007/s00220-009-0777-5.

[5]

R. Buckingham and P. Miller, Exact solutions of semiclassical non-characteristic Cauchy problems for the sine-Gordon equation,, Physica D, 237 (2008), 2296. doi: 10.1016/j.physd.2008.02.010.

[6]

F. Magee, C. J. Barone, A. Esposito and A. Scott, Theory and applications of the sine-Gordon equation,, Riv. Nuovo. Cimento, 1 (1971), 227.

[7]

G. Derks, A. Doelman, S. A. van Gils and T. Visser, Travelling waves in a singularly perturbed sine-Gordon equation,, Physica D, 180 (2003), 40. doi: 10.1016/S0167-2789(03)00050-2.

[8]

V. Maslov, "Theory of Perturbations and Asymptotic Methods,", French translation of Russian original, (1965).

[9]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,", Applied Mathematical Sciences, 44 (1983).

[10]

J. Robbin and D. Salamon, The Maslov index for paths,, Topology, 32 (1993), 827. doi: 10.1016/0040-9383(93)90052-W.

[11]

M. Salerno, Discrete model for DNA-promoter dynamics,, Physical Review A (3), 44 (1991), 5292. doi: 10.1103/PhysRevA.44.5292.

[12]

A. Scott, F. Chu and D. McLaughlin, The soliton: A new concept in applied science,, Proc. of the IEEE, 61 (1973), 1443. doi: 10.1109/PROC.1973.9296.

[13]

A. Scott, Waveform stability on a nonlinear Klein-Gordon equation,, Proc. Letters of the IEEE, (1969).

[14]

A. Scott, F. Chu and S. Reible, Magnetic-flux propagation on a Josephson transmission line,, J. Applied Phys., 47 (1976), 3272. doi: 10.1063/1.323126.

[15]

G. B. Whitham, "Linear and Nonlinear Waves,", Reprint of the 1974 original, (1974).

show all references

References:
[1]

A. Abbondandolo, "Morse Theory for Hamiltonian Systems,", Chapman & Hall/CRC Research Notes in Mathematics, 425 (2001).

[2]

V. I. Arnol'd, On a characteristic class entering into conditions of quantization,, Func. Anal. Appl., 1 (1967), 1. doi: 10.1007/BF01075861.

[3]

P. Bates and C. K. R. T. Jones, Invariant manifolds for semilinear partial differential equations,, in, 2 (1989).

[4]

J. C. Bronski and M. A. Johnson, Krein signatures for the Faddeev-Takhtajan eigenvalue problem,, Communications in Mathematical Physics, 288 (2009), 821. doi: 10.1007/s00220-009-0777-5.

[5]

R. Buckingham and P. Miller, Exact solutions of semiclassical non-characteristic Cauchy problems for the sine-Gordon equation,, Physica D, 237 (2008), 2296. doi: 10.1016/j.physd.2008.02.010.

[6]

F. Magee, C. J. Barone, A. Esposito and A. Scott, Theory and applications of the sine-Gordon equation,, Riv. Nuovo. Cimento, 1 (1971), 227.

[7]

G. Derks, A. Doelman, S. A. van Gils and T. Visser, Travelling waves in a singularly perturbed sine-Gordon equation,, Physica D, 180 (2003), 40. doi: 10.1016/S0167-2789(03)00050-2.

[8]

V. Maslov, "Theory of Perturbations and Asymptotic Methods,", French translation of Russian original, (1965).

[9]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,", Applied Mathematical Sciences, 44 (1983).

[10]

J. Robbin and D. Salamon, The Maslov index for paths,, Topology, 32 (1993), 827. doi: 10.1016/0040-9383(93)90052-W.

[11]

M. Salerno, Discrete model for DNA-promoter dynamics,, Physical Review A (3), 44 (1991), 5292. doi: 10.1103/PhysRevA.44.5292.

[12]

A. Scott, F. Chu and D. McLaughlin, The soliton: A new concept in applied science,, Proc. of the IEEE, 61 (1973), 1443. doi: 10.1109/PROC.1973.9296.

[13]

A. Scott, Waveform stability on a nonlinear Klein-Gordon equation,, Proc. Letters of the IEEE, (1969).

[14]

A. Scott, F. Chu and S. Reible, Magnetic-flux propagation on a Josephson transmission line,, J. Applied Phys., 47 (1976), 3272. doi: 10.1063/1.323126.

[15]

G. B. Whitham, "Linear and Nonlinear Waves,", Reprint of the 1974 original, (1974).

[1]

Carl-Friedrich Kreiner, Johannes Zimmer. Heteroclinic travelling waves for the lattice sine-Gordon equation with linear pair interaction. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 915-931. doi: 10.3934/dcds.2009.25.915

[2]

Aslihan Demirkaya, Panayotis G. Kevrekidis, Milena Stanislavova, Atanas Stefanov. Spectral stability analysis for standing waves of a perturbed Klein-Gordon equation. Conference Publications, 2015, 2015 (special) : 359-368. doi: 10.3934/proc.2015.0359

[3]

Wilhelm Schlag. Spectral theory and nonlinear partial differential equations: A survey. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 703-723. doi: 10.3934/dcds.2006.15.703

[4]

Goong Chen, Zhonghai Ding, Shujie Li. On positive solutions of the elliptic sine-Gordon equation. Communications on Pure & Applied Analysis, 2005, 4 (2) : 283-294. doi: 10.3934/cpaa.2005.4.283

[5]

Qin Sheng, David A. Voss, Q. M. Khaliq. An adaptive splitting algorithm for the sine-Gordon equation. Conference Publications, 2005, 2005 (Special) : 792-797. doi: 10.3934/proc.2005.2005.792

[6]

Masahito Ohta, Grozdena Todorova. Strong instability of standing waves for nonlinear Klein-Gordon equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 315-322. doi: 10.3934/dcds.2005.12.315

[7]

Nabile Boussïd, Andrew Comech. Spectral stability of bi-frequency solitary waves in Soler and Dirac-Klein-Gordon models. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1331-1347. doi: 10.3934/cpaa.2018065

[8]

John Boyd. Strongly nonlinear perturbation theory for solitary waves and bions. Evolution Equations & Control Theory, 2019, 8 (1) : 1-29. doi: 10.3934/eect.2019001

[9]

Sara Cuenda, Niurka R. Quintero, Angel Sánchez. Sine-Gordon wobbles through Bäcklund transformations. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1047-1056. doi: 10.3934/dcdss.2011.4.1047

[10]

Igor Chueshov, Peter E. Kloeden, Meihua Yang. Synchronization in coupled stochastic sine-Gordon wave model. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 2969-2990. doi: 10.3934/dcdsb.2016082

[11]

Cornelia Schiebold. Noncommutative AKNS systems and multisoliton solutions to the matrix sine-gordon equation. Conference Publications, 2009, 2009 (Special) : 678-690. doi: 10.3934/proc.2009.2009.678

[12]

Ivan Christov, C. I. Christov. The coarse-grain description of interacting sine-Gordon solitons with varying widths. Conference Publications, 2009, 2009 (Special) : 171-180. doi: 10.3934/proc.2009.2009.171

[13]

V. V. Chepyzhov, M. I. Vishik, W. L. Wendland. On non-autonomous sine-Gordon type equations with a simple global attractor and some averaging. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 27-38. doi: 10.3934/dcds.2005.12.27

[14]

Yangrong Li, Shuang Yang. Backward compact and periodic random attractors for non-autonomous sine-Gordon equations with multiplicative noise. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1155-1175. doi: 10.3934/cpaa.2019056

[15]

Rémi Leclercq. Spectral invariants in Lagrangian Floer theory. Journal of Modern Dynamics, 2008, 2 (2) : 249-286. doi: 10.3934/jmd.2008.2.249

[16]

Barry Simon. Equilibrium measures and capacities in spectral theory. Inverse Problems & Imaging, 2007, 1 (4) : 713-772. doi: 10.3934/ipi.2007.1.713

[17]

Robert Carlson. Spectral theory for nonconservative transmission line networks. Networks & Heterogeneous Media, 2011, 6 (2) : 257-277. doi: 10.3934/nhm.2011.6.257

[18]

Xiongping Dai, Yu Huang, Mingqing Xiao. Realization of joint spectral radius via Ergodic theory. Electronic Research Announcements, 2011, 18: 22-30. doi: 10.3934/era.2011.18.22

[19]

Álvaro Pelayo, San Vű Ngọc. First steps in symplectic and spectral theory of integrable systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3325-3377. doi: 10.3934/dcds.2012.32.3325

[20]

Leonid Golinskii, Mikhail Kudryavtsev. An inverse spectral theory for finite CMV matrices. Inverse Problems & Imaging, 2010, 4 (1) : 93-110. doi: 10.3934/ipi.2010.4.93

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]