October  2012, 5(5): 925-937. doi: 10.3934/dcdss.2012.5.925

The spectrum of travelling wave solutions to the Sine-Gordon equation

1. 

Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States

2. 

Department of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia

Received  October 2010 Revised  September 2011 Published  January 2012

We investigate the spectrum of the linear operator coming from the sine-Gordon equation linearized about a travelling kink-wave solution. Using various geometric techniques as well as some elementary methods from ODE theory, we find that the point spectrum of such an operator is purely imaginary provided the wave speed $c$ of the travelling wave is not $\pm 1$. We then compute the essential spectrum of the same operator.
Citation: Christopher K. R. T. Jones, Robert Marangell. The spectrum of travelling wave solutions to the Sine-Gordon equation. Discrete and Continuous Dynamical Systems - S, 2012, 5 (5) : 925-937. doi: 10.3934/dcdss.2012.5.925
References:
[1]

A. Abbondandolo, "Morse Theory for Hamiltonian Systems," Chapman & Hall/CRC Research Notes in Mathematics, 425, Chapman & Hall/CRC, Boca Raton, FL, 2001.

[2]

V. I. Arnol'd, On a characteristic class entering into conditions of quantization, Func. Anal. Appl., 1 (1967), 1-14. doi: 10.1007/BF01075861.

[3]

P. Bates and C. K. R. T. Jones, Invariant manifolds for semilinear partial differential equations, in "Dynamics Reported," Vol. 2, Dynam. Report. Ser. Dynam. Systems Appl., 2, Wiley, Chichester, 1989.

[4]

J. C. Bronski and M. A. Johnson, Krein signatures for the Faddeev-Takhtajan eigenvalue problem, Communications in Mathematical Physics, 288 (2009), 821-846. doi: 10.1007/s00220-009-0777-5.

[5]

R. Buckingham and P. Miller, Exact solutions of semiclassical non-characteristic Cauchy problems for the sine-Gordon equation, Physica D, 237 (2008), 2296-2341. doi: 10.1016/j.physd.2008.02.010.

[6]

F. Magee, C. J. Barone, A. Esposito and A. Scott, Theory and applications of the sine-Gordon equation, Riv. Nuovo. Cimento, 1 (1971), 227-267.

[7]

G. Derks, A. Doelman, S. A. van Gils and T. Visser, Travelling waves in a singularly perturbed sine-Gordon equation, Physica D, 180 (2003), 40-70. doi: 10.1016/S0167-2789(03)00050-2.

[8]

V. Maslov, "Theory of Perturbations and Asymptotic Methods," French translation of Russian original, 1965, 1972.

[9]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations," Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983.

[10]

J. Robbin and D. Salamon, The Maslov index for paths, Topology, 32 (1993), 827-844. doi: 10.1016/0040-9383(93)90052-W.

[11]

M. Salerno, Discrete model for DNA-promoter dynamics, Physical Review A (3), 44 (1991), 5292-5297. doi: 10.1103/PhysRevA.44.5292.

[12]

A. Scott, F. Chu and D. McLaughlin, The soliton: A new concept in applied science, Proc. of the IEEE, 61 (1973), 1443-1483. doi: 10.1109/PROC.1973.9296.

[13]

A. Scott, Waveform stability on a nonlinear Klein-Gordon equation, Proc. Letters of the IEEE, (1969).

[14]

A. Scott, F. Chu and S. Reible, Magnetic-flux propagation on a Josephson transmission line, J. Applied Phys., 47 (1976), 3272-3286. doi: 10.1063/1.323126.

[15]

G. B. Whitham, "Linear and Nonlinear Waves," Reprint of the 1974 original, Pure and Applied Mathematics (New York), A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1999.

show all references

References:
[1]

A. Abbondandolo, "Morse Theory for Hamiltonian Systems," Chapman & Hall/CRC Research Notes in Mathematics, 425, Chapman & Hall/CRC, Boca Raton, FL, 2001.

[2]

V. I. Arnol'd, On a characteristic class entering into conditions of quantization, Func. Anal. Appl., 1 (1967), 1-14. doi: 10.1007/BF01075861.

[3]

P. Bates and C. K. R. T. Jones, Invariant manifolds for semilinear partial differential equations, in "Dynamics Reported," Vol. 2, Dynam. Report. Ser. Dynam. Systems Appl., 2, Wiley, Chichester, 1989.

[4]

J. C. Bronski and M. A. Johnson, Krein signatures for the Faddeev-Takhtajan eigenvalue problem, Communications in Mathematical Physics, 288 (2009), 821-846. doi: 10.1007/s00220-009-0777-5.

[5]

R. Buckingham and P. Miller, Exact solutions of semiclassical non-characteristic Cauchy problems for the sine-Gordon equation, Physica D, 237 (2008), 2296-2341. doi: 10.1016/j.physd.2008.02.010.

[6]

F. Magee, C. J. Barone, A. Esposito and A. Scott, Theory and applications of the sine-Gordon equation, Riv. Nuovo. Cimento, 1 (1971), 227-267.

[7]

G. Derks, A. Doelman, S. A. van Gils and T. Visser, Travelling waves in a singularly perturbed sine-Gordon equation, Physica D, 180 (2003), 40-70. doi: 10.1016/S0167-2789(03)00050-2.

[8]

V. Maslov, "Theory of Perturbations and Asymptotic Methods," French translation of Russian original, 1965, 1972.

[9]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations," Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983.

[10]

J. Robbin and D. Salamon, The Maslov index for paths, Topology, 32 (1993), 827-844. doi: 10.1016/0040-9383(93)90052-W.

[11]

M. Salerno, Discrete model for DNA-promoter dynamics, Physical Review A (3), 44 (1991), 5292-5297. doi: 10.1103/PhysRevA.44.5292.

[12]

A. Scott, F. Chu and D. McLaughlin, The soliton: A new concept in applied science, Proc. of the IEEE, 61 (1973), 1443-1483. doi: 10.1109/PROC.1973.9296.

[13]

A. Scott, Waveform stability on a nonlinear Klein-Gordon equation, Proc. Letters of the IEEE, (1969).

[14]

A. Scott, F. Chu and S. Reible, Magnetic-flux propagation on a Josephson transmission line, J. Applied Phys., 47 (1976), 3272-3286. doi: 10.1063/1.323126.

[15]

G. B. Whitham, "Linear and Nonlinear Waves," Reprint of the 1974 original, Pure and Applied Mathematics (New York), A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1999.

[1]

Carl-Friedrich Kreiner, Johannes Zimmer. Heteroclinic travelling waves for the lattice sine-Gordon equation with linear pair interaction. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 915-931. doi: 10.3934/dcds.2009.25.915

[2]

Aslihan Demirkaya, Panayotis G. Kevrekidis, Milena Stanislavova, Atanas Stefanov. Spectral stability analysis for standing waves of a perturbed Klein-Gordon equation. Conference Publications, 2015, 2015 (special) : 359-368. doi: 10.3934/proc.2015.0359

[3]

Goong Chen, Zhonghai Ding, Shujie Li. On positive solutions of the elliptic sine-Gordon equation. Communications on Pure and Applied Analysis, 2005, 4 (2) : 283-294. doi: 10.3934/cpaa.2005.4.283

[4]

Qin Sheng, David A. Voss, Q. M. Khaliq. An adaptive splitting algorithm for the sine-Gordon equation. Conference Publications, 2005, 2005 (Special) : 792-797. doi: 10.3934/proc.2005.2005.792

[5]

Wilhelm Schlag. Spectral theory and nonlinear partial differential equations: A survey. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 703-723. doi: 10.3934/dcds.2006.15.703

[6]

Masahito Ohta, Grozdena Todorova. Strong instability of standing waves for nonlinear Klein-Gordon equations. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 315-322. doi: 10.3934/dcds.2005.12.315

[7]

Nabile Boussïd, Andrew Comech. Spectral stability of bi-frequency solitary waves in Soler and Dirac-Klein-Gordon models. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1331-1347. doi: 10.3934/cpaa.2018065

[8]

Andrew Comech, Elena Kopylova. Orbital stability and spectral properties of solitary waves of Klein–Gordon equation with concentrated nonlinearity. Communications on Pure and Applied Analysis, 2021, 20 (6) : 2187-2209. doi: 10.3934/cpaa.2021063

[9]

John Boyd. Strongly nonlinear perturbation theory for solitary waves and bions. Evolution Equations and Control Theory, 2019, 8 (1) : 1-29. doi: 10.3934/eect.2019001

[10]

Sara Cuenda, Niurka R. Quintero, Angel Sánchez. Sine-Gordon wobbles through Bäcklund transformations. Discrete and Continuous Dynamical Systems - S, 2011, 4 (5) : 1047-1056. doi: 10.3934/dcdss.2011.4.1047

[11]

Igor Chueshov, Peter E. Kloeden, Meihua Yang. Synchronization in coupled stochastic sine-Gordon wave model. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 2969-2990. doi: 10.3934/dcdsb.2016082

[12]

Cornelia Schiebold. Noncommutative AKNS systems and multisoliton solutions to the matrix sine-gordon equation. Conference Publications, 2009, 2009 (Special) : 678-690. doi: 10.3934/proc.2009.2009.678

[13]

Ivan Christov, C. I. Christov. The coarse-grain description of interacting sine-Gordon solitons with varying widths. Conference Publications, 2009, 2009 (Special) : 171-180. doi: 10.3934/proc.2009.2009.171

[14]

Yangrong Li, Shuang Yang. Backward compact and periodic random attractors for non-autonomous sine-Gordon equations with multiplicative noise. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1155-1175. doi: 10.3934/cpaa.2019056

[15]

V. V. Chepyzhov, M. I. Vishik, W. L. Wendland. On non-autonomous sine-Gordon type equations with a simple global attractor and some averaging. Discrete and Continuous Dynamical Systems, 2005, 12 (1) : 27-38. doi: 10.3934/dcds.2005.12.27

[16]

Shuang Yang, Yangrong Li. Forward controllability of a random attractor for the non-autonomous stochastic sine-Gordon equation on an unbounded domain. Evolution Equations and Control Theory, 2020, 9 (3) : 581-604. doi: 10.3934/eect.2020025

[17]

Hang Zheng, Yonghui Xia, Manuel Pinto. Chaotic motion and control of the driven-damped Double Sine-Gordon equation. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022037

[18]

Rémi Leclercq. Spectral invariants in Lagrangian Floer theory. Journal of Modern Dynamics, 2008, 2 (2) : 249-286. doi: 10.3934/jmd.2008.2.249

[19]

Barry Simon. Equilibrium measures and capacities in spectral theory. Inverse Problems and Imaging, 2007, 1 (4) : 713-772. doi: 10.3934/ipi.2007.1.713

[20]

Thomas Kappeler, Yannick Widmer. On nomalized differentials on spectral curves associated with the sinh-Gordon equation. Journal of Geometric Mechanics, 2021, 13 (1) : 73-143. doi: 10.3934/jgm.2020023

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (73)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]