\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Singular limit of a two-phase flow problem in porous medium as the air viscosity tends to zero

Abstract Related Papers Cited by
  • In this paper we consider a two-phase flow problem in porous media and study its singular limit as the viscosity of the air tends to zero; more precisely, we prove the convergence of subsequences to solutions of a generalized Richards model.
    Mathematics Subject Classification: 35K65, 35D30, 35B25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    H. W. Alt and S. Luckhaus, Quasilinear elliptic equations, Math.-Z., 183 (1983), 311-341.doi: 10.1007/BF01176474.

    [2]

    H. Brezis, "Analyse Fonctionnelle Théorie et Applications,'' Masson, (1993).

    [3]

    Z. Chen, Degenerate two-phase incompressible flow. I. Existence, uniqueness and regularity of a weak solution, J. Differential Equations, 171 (2001), 203-232.doi: 10.1006/jdeq.2000.3848.

    [4]

    F. Z. Daïm, R. Eymard and D. Hilhorst, Existence of a solution for two phase flow in porous media: the case that the porosity depends on the pressure, J. Math. Anal. Appl., 326 (2007), 332-351.doi: 10.1016/j.jmaa.2006.02.082.

    [5]

    C. J. Van Duijn and L. A. Peletier, Nonstationary filtration in partially satured porous media, Arch. Rational Mech. Anal., 78 (1982), 173-198.doi: 10.1007/BF00250838.

    [6]

    R. Eymard, M. Gutnic and D. Hilhorst, The finit volume method for an elliptic-parabolic equation, Acta Mathematica Universitatis Comenianae, 67 (1998), 181-195.

    [7]

    J. Hulshof and N. Wolanski, Monotone flows in n-dimensional partially saturated porous media: Lipschitz-continuity of the interface, Arch. Rational Mech. Anal., 102 (1988), 287-305.doi: 10.1007/BF00251532.

    [8]

    O. A. Ladyhenskaya and N. N. Ural'ceva, "Linear and Quasilinear Elliptic Equations,'' American Mathematical Society, (1964).

    [9]

    O. A. Ladyhenskaya, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type,'' American Mathematical Society, 1968.

    [10]

    F. Otto, $L^1$-concentration and uniqueness for quasilinear elliptic-parabolic equations, J. Differential Equations, 131 (1996), 20-38.doi: 10.1006/jdeq.1996.0155.

    [11]

    I. S. Pop, Error estimates for a time discretization method for the Richard's equation, Computational Geosciences, 6 (2002), 141-160.doi: 10.1023/A:1019936917350.

    [12]

    F. A. Radu, I. S. Pop and P. Knabner, Order of convergence estimates for an Euler implicit, mixed finite element discretization of Richards' equation, SIAM Journal on Numerical Analysis, 42 (2004), 1452-1478.doi: 10.1137/S0036142902405229.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(49) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return