October  2012, 5(5): 971-987. doi: 10.3934/dcdss.2012.5.971

On the asymptotic stability of localized modes in the discrete nonlinear Schrödinger equation

1. 

Faculty of Mathematics, Kyushu University, Fukuoka 819-0395, Japan

2. 

Department of Mathematics, McMaster University, Hamilton, Ontario L8S 4K1

Received  March 2011 Revised  June 2011 Published  January 2012

Asymptotic stability of localized modes in the discrete nonlinear Schrödinger equation was earlier established for septic and higher-order nonlinear terms by using Strichartz estimate. We use here pointwise dispersive decay estimates to push down the lower bound for the exponent of the nonlinear terms.
Citation: Tetsu Mizumachi, Dmitry Pelinovsky. On the asymptotic stability of localized modes in the discrete nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 971-987. doi: 10.3934/dcdss.2012.5.971
References:
[1]

J. Belmonte-Beitia and D. Pelinovsky, Bifurcation of gap solitons in periodic potentials with a sign-varying nonlinearity coefficient,, Applic. Anal., 89 (2010), 1335.   Google Scholar

[2]

V. S. Buslaev and G. S. Perelman, Scattering for the nonlinear Schrödinger equation: States close to a soliton,, St. Petersburg Math. J., 4 (1993), 1111.   Google Scholar

[3]

S. Cuccagna, Orbitally but not asymptotically stable ground states for the discrete NLS,, Discrete Contin. Dyn. Syst., 26 (2010), 105.  doi: 10.3934/dcds.2010.26.105.  Google Scholar

[4]

S. Cuccagna and M. Tarulli, On asymptotic stability of standing waves of discrete Schrödinger equation in $\mathbbZ$,, SIAM J. Math. Anal., 41 (2009), 861.   Google Scholar

[5]

P. G. Kevrekidis, D. E. Pelinovsky and A. Stefanov, Asymptotic stability of small bound states in the discrete nonlinear Schrödinger equation,, SIAM J. Math. Anal., 41 (2009), 2010.  doi: 10.1137/080737654.  Google Scholar

[6]

E. Kirr and Ö. Mizrak, Asymptotic stability of ground states in 3D nonlinear Schrödinger equation including subcritical cases,, J. Funct. Anal., 257 (2009), 3691.  doi: 10.1016/j.jfa.2009.08.010.  Google Scholar

[7]

E. Kirr and A. Zarnescu, Asymptotic stability of ground states in 2D nonlinear Schrödinger equation including subcritical cases,, J. Diff. Eqs., 247 (2009), 710.  doi: 10.1016/j.jde.2009.04.015.  Google Scholar

[8]

A. Komech, E. Kopylova and M. Kunze, Dispersive estimates for 1D discrete Schrödinger and Klein-Gordon equations,, Applic. Anal., 85 (2006), 1487.  doi: 10.1080/00036810601074321.  Google Scholar

[9]

J. Krieger and W. Schlag, Stable manifolds for all monic supercritical focusing nonlinear Schrödinger equations in one dimension,, J. Amer. Math. Soc., 19 (2006), 815.  doi: 10.1090/S0894-0347-06-00524-8.  Google Scholar

[10]

F. Linares and G. Ponce, "Introduction to Nonlinear Dispersive Equations,", Universitext, (2009).   Google Scholar

[11]

A. Mielke and C. Patz, Dispersive stability of infinite-dimensional Hamiltonian systems on lattices,, Applic. Anal., 89 (2010), 1493.  doi: 10.1080/00036810903517605.  Google Scholar

[12]

G. M. N'Guérékata and A. Pankov, Global well-posedness for discrete nonlinear Schrödinger equation,, Applic. Anal., 89 (2010), 1513.   Google Scholar

[13]

P. Pacciani, V. V. Konotop and G. Perla Menzala, On localized solutions of discrete nonlinear Schrödinger equation. An exact result,, Physica D, 204 (2005), 122.  doi: 10.1016/j.physd.2005.04.009.  Google Scholar

[14]

A. Pankov, Gap solitons in periodic discrete nonlinear Schrödinger equations,, Nonlinearity, 19 (2006), 27.  doi: 10.1088/0951-7715/19/1/002.  Google Scholar

[15]

P. Panayotaros and D. Pelinovsky, Periodic oscillations of discrete NLS solitons in the presence of diffraction management,, Nonlinearity, 21 (2008), 1265.  doi: 10.1088/0951-7715/21/6/007.  Google Scholar

[16]

D. Pelinovsky and A. Stefanov, On the spectral theory and dispersive estimates for a discrete Schrödinger equation in one dimension,, J. Math. Phys., 49 (2008).   Google Scholar

[17]

D. Pelinovsky and A. Sakovich, Internal modes of discrete solitons near the anti-continuum limit of the dNLS equation,, Physica D, 240 (2011), 265.  doi: 10.1016/j.physd.2010.09.002.  Google Scholar

[18]

W. Schlag, Dispersive estimates for Schrödinger operators: A survey,, in, 163 (2007), 255.   Google Scholar

[19]

A. Stefanov and P. Kevrekidis, Asymptotic behaviour of small solutions for the discrete nonlinear Schrödinger and Klein-Gordon equations,, Nonlinearity, 18 (2005), 1841.  doi: 10.1088/0951-7715/18/4/022.  Google Scholar

[20]

M. I. Weinstein, Excitation thresholds for nonlinear localized modes on lattices,, Nonlinearity, 12 (1999), 673.  doi: 10.1088/0951-7715/12/3/314.  Google Scholar

show all references

References:
[1]

J. Belmonte-Beitia and D. Pelinovsky, Bifurcation of gap solitons in periodic potentials with a sign-varying nonlinearity coefficient,, Applic. Anal., 89 (2010), 1335.   Google Scholar

[2]

V. S. Buslaev and G. S. Perelman, Scattering for the nonlinear Schrödinger equation: States close to a soliton,, St. Petersburg Math. J., 4 (1993), 1111.   Google Scholar

[3]

S. Cuccagna, Orbitally but not asymptotically stable ground states for the discrete NLS,, Discrete Contin. Dyn. Syst., 26 (2010), 105.  doi: 10.3934/dcds.2010.26.105.  Google Scholar

[4]

S. Cuccagna and M. Tarulli, On asymptotic stability of standing waves of discrete Schrödinger equation in $\mathbbZ$,, SIAM J. Math. Anal., 41 (2009), 861.   Google Scholar

[5]

P. G. Kevrekidis, D. E. Pelinovsky and A. Stefanov, Asymptotic stability of small bound states in the discrete nonlinear Schrödinger equation,, SIAM J. Math. Anal., 41 (2009), 2010.  doi: 10.1137/080737654.  Google Scholar

[6]

E. Kirr and Ö. Mizrak, Asymptotic stability of ground states in 3D nonlinear Schrödinger equation including subcritical cases,, J. Funct. Anal., 257 (2009), 3691.  doi: 10.1016/j.jfa.2009.08.010.  Google Scholar

[7]

E. Kirr and A. Zarnescu, Asymptotic stability of ground states in 2D nonlinear Schrödinger equation including subcritical cases,, J. Diff. Eqs., 247 (2009), 710.  doi: 10.1016/j.jde.2009.04.015.  Google Scholar

[8]

A. Komech, E. Kopylova and M. Kunze, Dispersive estimates for 1D discrete Schrödinger and Klein-Gordon equations,, Applic. Anal., 85 (2006), 1487.  doi: 10.1080/00036810601074321.  Google Scholar

[9]

J. Krieger and W. Schlag, Stable manifolds for all monic supercritical focusing nonlinear Schrödinger equations in one dimension,, J. Amer. Math. Soc., 19 (2006), 815.  doi: 10.1090/S0894-0347-06-00524-8.  Google Scholar

[10]

F. Linares and G. Ponce, "Introduction to Nonlinear Dispersive Equations,", Universitext, (2009).   Google Scholar

[11]

A. Mielke and C. Patz, Dispersive stability of infinite-dimensional Hamiltonian systems on lattices,, Applic. Anal., 89 (2010), 1493.  doi: 10.1080/00036810903517605.  Google Scholar

[12]

G. M. N'Guérékata and A. Pankov, Global well-posedness for discrete nonlinear Schrödinger equation,, Applic. Anal., 89 (2010), 1513.   Google Scholar

[13]

P. Pacciani, V. V. Konotop and G. Perla Menzala, On localized solutions of discrete nonlinear Schrödinger equation. An exact result,, Physica D, 204 (2005), 122.  doi: 10.1016/j.physd.2005.04.009.  Google Scholar

[14]

A. Pankov, Gap solitons in periodic discrete nonlinear Schrödinger equations,, Nonlinearity, 19 (2006), 27.  doi: 10.1088/0951-7715/19/1/002.  Google Scholar

[15]

P. Panayotaros and D. Pelinovsky, Periodic oscillations of discrete NLS solitons in the presence of diffraction management,, Nonlinearity, 21 (2008), 1265.  doi: 10.1088/0951-7715/21/6/007.  Google Scholar

[16]

D. Pelinovsky and A. Stefanov, On the spectral theory and dispersive estimates for a discrete Schrödinger equation in one dimension,, J. Math. Phys., 49 (2008).   Google Scholar

[17]

D. Pelinovsky and A. Sakovich, Internal modes of discrete solitons near the anti-continuum limit of the dNLS equation,, Physica D, 240 (2011), 265.  doi: 10.1016/j.physd.2010.09.002.  Google Scholar

[18]

W. Schlag, Dispersive estimates for Schrödinger operators: A survey,, in, 163 (2007), 255.   Google Scholar

[19]

A. Stefanov and P. Kevrekidis, Asymptotic behaviour of small solutions for the discrete nonlinear Schrödinger and Klein-Gordon equations,, Nonlinearity, 18 (2005), 1841.  doi: 10.1088/0951-7715/18/4/022.  Google Scholar

[20]

M. I. Weinstein, Excitation thresholds for nonlinear localized modes on lattices,, Nonlinearity, 12 (1999), 673.  doi: 10.1088/0951-7715/12/3/314.  Google Scholar

[1]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[2]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[3]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[4]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[5]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[6]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[7]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[8]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[9]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[10]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[11]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[12]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[13]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[14]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[15]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[16]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[17]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[18]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[19]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[20]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]