October  2012, 5(5): 989-1020. doi: 10.3934/dcdss.2012.5.989

A lattice model for resonance in open periodic waveguides

1. 

Department of Mathematics, Embry-Riddle Aeronautical University, Daytona Beach, FL 32114, United States

2. 

Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803, United States

Received  April 2011 Revised  September 2011 Published  January 2012

We present a discrete model of resonant scattering of waves by an open periodic waveguide. The model elucidates a phenomenon common in electromagnetics, in which the interaction of plane waves with embedded guided modes of the waveguide causes sharp transmission anomalies and field amplification. The ambient space is modeled by a planar lattice and the waveguide by a linear periodic lattice coupled to the planar one along a line. We show the existence of standing and traveling guided modes and analyze a tangent bifurcation, in which resonance is initiated at a critical coupling strength where a guided mode appears, beginning with a single standing wave and splitting into a pair of waves traveling in opposing directions. Complex perturbation analysis of the scattering problem in the complex frequency and wavenumber domain reveals the complex structure of the transmission coefficient at resonance.
Citation: Natalia Ptitsyna, Stephen P. Shipman. A lattice model for resonance in open periodic waveguides. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 989-1020. doi: 10.3934/dcdss.2012.5.989
References:
[1]

Anne-Sophie Bonnet-Bendhia and Felipe Starling, Guided waves by electromagnetic gratings and nonuniqueness examples for the diffraction problem,, Math. Meth. Appl. Sci., 17 (1994), 305.   Google Scholar

[2]

Shanhui Fan and J. D. Joannopoulos, Analysis of guided resonances in photonic crystal slabs,, Phys. Rev. B, 65 (2002).   Google Scholar

[3]

U. Fano, Effects of configuration interaction on intensities and phase shifts,, Phys. Rev., 124 (1961), 1866.  doi: 10.1103/PhysRev.124.1866.  Google Scholar

[4]

S. Fan, P. R. Villeneuve and J. D. Joannopoulos, Rate-equation analysis of output efficiency and modulation rate of photonic-crystal light-emitting diodes,, IEEE Quantum. Elec., 36 (2000), 1123.   Google Scholar

[5]

Alexander Figotin and Jeffrey H. Schenker, Spectral theory of time dispersive and dissipative systems,, J. Stat. Phys., 118 (2005), 199.  doi: 10.1007/s10955-004-8783-7.  Google Scholar

[6]

Alexander Figotin and Stephen P. Shipman, Open systems viewed through their conservative extensions,, J. Stat. Phys., 125 (2006), 363.   Google Scholar

[7]

Hermann A. Haus and David A. B. Miller, Attenuation of cutoff modes and leaky modes of dielectric slab structures,, IEEE J. Quantum Elec., 22 (1986), 310.  doi: 10.1109/JQE.1986.1072956.  Google Scholar

[8]

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, Jeff F. Young, S. R. Johnson, Jim MacKenzie and T. Tiedje, Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,, Appl. Phys. Lett., 70 (1997), 1438.  doi: 10.1063/1.118570.  Google Scholar

[9]

Haitao Liu and Philippe Lalanne, Microscopic theory of the extraordinary optical transmission,, Lett. Nature, 452 (2008), 728.  doi: 10.1038/nature06762.  Google Scholar

[10]

S. Longhi, Bound states in the continuum in a single-level Fano-Anderson model,, Eur. Phys. J. B, 57 (2007), 45.  doi: 10.1140/epjb/e2007-00143-2.  Google Scholar

[11]

G. D. Mahan, "Many-Particle Physics,", Second edition, (1990).   Google Scholar

[12]

Andrey E. Miroshnichenko, Sergei F. Mingaleev, Sergej Flach and Yuri S. Kivshar, Nonlinear Fano resonance and bistable wave transmission,, Phys. Rev. E (3), 71 (2005).   Google Scholar

[13]

P. Paddon and Jeff F. Young, Two-dimensional vector-coupled-mode theory for textured planar waveguides,, Phys. Rev. B, 61 (2000), 2090.  doi: 10.1103/PhysRevB.61.2090.  Google Scholar

[14]

S. T. Peng, T. Tamir and H. L. Bertoni, Theory of periodic dielectric waveguides,, IEEE Trans. Microwave Th. and Tech., 23 (1975), 123.  doi: 10.1109/TMTT.1975.1128513.  Google Scholar

[15]

Michael Reed and Barry Simon, "Methods of Mathematical Physics. IV: Analysis of Operators,", Academic Press, (1980).   Google Scholar

[16]

Stephen P. Shipman, Resonant scattering by open periodic waveguides,, in, (2010).   Google Scholar

[17]

Stephen P. Shipman, Jennifer Ribbeck, Katherine H. Smith and Clayton Weeks, A discrete model for resonance near embedded bound states,, IEEE Photonics J., 2 (2010), 911.   Google Scholar

[18]

Stephen P. Shipman and Stephanos Venakides, Resonance and bound states in photonic crystal slabs,, SIAM J. Appl. Math., 64 (2003), 322.  doi: 10.1137/S0036139902411120.  Google Scholar

[19]

Stephen P. Shipman and Stephanos Venakides, Resonant transmission near non-robust periodic slab modes,, Phys. Rev. E, 71 (2005).   Google Scholar

[20]

Stephen P. Shipman and Darko Volkov, Guided modes in periodic slabs: Existence and nonexistence,, SIAM J. Appl. Math., 67 (2007), 687.  doi: 10.1137/050647189.  Google Scholar

[21]

Sergei G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius and Teruya Ishihara, Quasiguided modes and optical properties of photonic crystal slabs,, Phys. Rev. B, 66 (2002).   Google Scholar

[22]

V. Weisskopf and E. Wigner, Berechnung der natürlichen linienbreite auf grund der diracschen lichttheorie,, Zeitschrift für Physik, 63 (1930), 54.  doi: 10.1007/BF01336768.  Google Scholar

show all references

References:
[1]

Anne-Sophie Bonnet-Bendhia and Felipe Starling, Guided waves by electromagnetic gratings and nonuniqueness examples for the diffraction problem,, Math. Meth. Appl. Sci., 17 (1994), 305.   Google Scholar

[2]

Shanhui Fan and J. D. Joannopoulos, Analysis of guided resonances in photonic crystal slabs,, Phys. Rev. B, 65 (2002).   Google Scholar

[3]

U. Fano, Effects of configuration interaction on intensities and phase shifts,, Phys. Rev., 124 (1961), 1866.  doi: 10.1103/PhysRev.124.1866.  Google Scholar

[4]

S. Fan, P. R. Villeneuve and J. D. Joannopoulos, Rate-equation analysis of output efficiency and modulation rate of photonic-crystal light-emitting diodes,, IEEE Quantum. Elec., 36 (2000), 1123.   Google Scholar

[5]

Alexander Figotin and Jeffrey H. Schenker, Spectral theory of time dispersive and dissipative systems,, J. Stat. Phys., 118 (2005), 199.  doi: 10.1007/s10955-004-8783-7.  Google Scholar

[6]

Alexander Figotin and Stephen P. Shipman, Open systems viewed through their conservative extensions,, J. Stat. Phys., 125 (2006), 363.   Google Scholar

[7]

Hermann A. Haus and David A. B. Miller, Attenuation of cutoff modes and leaky modes of dielectric slab structures,, IEEE J. Quantum Elec., 22 (1986), 310.  doi: 10.1109/JQE.1986.1072956.  Google Scholar

[8]

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, Jeff F. Young, S. R. Johnson, Jim MacKenzie and T. Tiedje, Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,, Appl. Phys. Lett., 70 (1997), 1438.  doi: 10.1063/1.118570.  Google Scholar

[9]

Haitao Liu and Philippe Lalanne, Microscopic theory of the extraordinary optical transmission,, Lett. Nature, 452 (2008), 728.  doi: 10.1038/nature06762.  Google Scholar

[10]

S. Longhi, Bound states in the continuum in a single-level Fano-Anderson model,, Eur. Phys. J. B, 57 (2007), 45.  doi: 10.1140/epjb/e2007-00143-2.  Google Scholar

[11]

G. D. Mahan, "Many-Particle Physics,", Second edition, (1990).   Google Scholar

[12]

Andrey E. Miroshnichenko, Sergei F. Mingaleev, Sergej Flach and Yuri S. Kivshar, Nonlinear Fano resonance and bistable wave transmission,, Phys. Rev. E (3), 71 (2005).   Google Scholar

[13]

P. Paddon and Jeff F. Young, Two-dimensional vector-coupled-mode theory for textured planar waveguides,, Phys. Rev. B, 61 (2000), 2090.  doi: 10.1103/PhysRevB.61.2090.  Google Scholar

[14]

S. T. Peng, T. Tamir and H. L. Bertoni, Theory of periodic dielectric waveguides,, IEEE Trans. Microwave Th. and Tech., 23 (1975), 123.  doi: 10.1109/TMTT.1975.1128513.  Google Scholar

[15]

Michael Reed and Barry Simon, "Methods of Mathematical Physics. IV: Analysis of Operators,", Academic Press, (1980).   Google Scholar

[16]

Stephen P. Shipman, Resonant scattering by open periodic waveguides,, in, (2010).   Google Scholar

[17]

Stephen P. Shipman, Jennifer Ribbeck, Katherine H. Smith and Clayton Weeks, A discrete model for resonance near embedded bound states,, IEEE Photonics J., 2 (2010), 911.   Google Scholar

[18]

Stephen P. Shipman and Stephanos Venakides, Resonance and bound states in photonic crystal slabs,, SIAM J. Appl. Math., 64 (2003), 322.  doi: 10.1137/S0036139902411120.  Google Scholar

[19]

Stephen P. Shipman and Stephanos Venakides, Resonant transmission near non-robust periodic slab modes,, Phys. Rev. E, 71 (2005).   Google Scholar

[20]

Stephen P. Shipman and Darko Volkov, Guided modes in periodic slabs: Existence and nonexistence,, SIAM J. Appl. Math., 67 (2007), 687.  doi: 10.1137/050647189.  Google Scholar

[21]

Sergei G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius and Teruya Ishihara, Quasiguided modes and optical properties of photonic crystal slabs,, Phys. Rev. B, 66 (2002).   Google Scholar

[22]

V. Weisskopf and E. Wigner, Berechnung der natürlichen linienbreite auf grund der diracschen lichttheorie,, Zeitschrift für Physik, 63 (1930), 54.  doi: 10.1007/BF01336768.  Google Scholar

[1]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[2]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[3]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[4]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[5]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[6]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[7]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[8]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[9]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[10]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[11]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[12]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020269

[13]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[14]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[15]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[16]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[17]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[18]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[19]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[20]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (38)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]