February  2013, 6(1): 1-16. doi: 10.3934/dcdss.2013.6.1

Relaxation and microstructure in a model for finite crystal plasticity with one slip system in three dimensions

1. 

Institut für Angewandte Mathematik, Universität Bonn, Endenicher Allee 60,53115 Bonn, Germany

2. 

Fakultät für Mathematik, Universität Regensburg, 93040 Regensburg, Germany

3. 

Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, United States

Received  May 2011 Revised  July 2011 Published  October 2012

Modern theories in crystal plasticity are based on a multiplicative decomposition of the deformation gradient into an elastic and a plastic part. The free energy of the associated variational problems is given by the sum of an elastic and a plastic energy. For a model with one slip system in a three-dimensional setting it is shown that the relaxation of the model with rigid elasticity can be approximated in the sense of $\Gamma$-convergence by models with finite elastic energy and diverging elastic constants.
Citation: Sergio Conti, Georg Dolzmann, Carolin Kreisbeck. Relaxation and microstructure in a model for finite crystal plasticity with one slip system in three dimensions. Discrete and Continuous Dynamical Systems - S, 2013, 6 (1) : 1-16. doi: 10.3934/dcdss.2013.6.1
References:
[1]

J. M. Ball and F. Murat, $ W^{1,p}$ quasiconvexity and variational prblems for multiple integrals, J. Funct. Anal., 58 (1984), 225-253. doi: 10.1016/0022-1236(84)90041-7.

[2]

A. Braides, "$\Gamma$-Convergence for Beginners," Oxford Lecture Series in Mathematics and its Applications 22. Oxford: Oxford University Press, 2002.

[3]

C. Carstensen, K. Hackl and A. Mielke, Non-convex potentials and microstructures in finite-strain plasticity, R. Soc. Lond. Proc. Ser. A, Math. Phys. Eng. Sci., 458 (2002), 299-317. doi: 10.1098/rspa.2001.0864.

[4]

S. Conti, Relaxation of single-slip single-crystal plasticity with linear hardening, in "Multiscale Materials Modeling" (Ed. P. Gumbsch), Freiburg, Fraunhofer IRB, (2006), 30-35.

[5]

S. Conti, G. Dolzmann and C. Klust, Relaxation of a class of variational models in crystal plasticity, Proc. R. Soc. Lond. Ser. A, Math. Phys. Eng. Sci., 465 (2009), 1735-1742. doi: 10.1098/rspa.2008.0390.

[6]

S. Conti, G. Dolzmann and C. Kreisbeck, Geometrically nonlinear models in crystal plasticity and the limit of rigid elasticity, PAMM, 10 (2010), 3-6. doi: 10.1002/pamm.201010002.

[7]

S. Conti, G. Dolzmann and C. Kreisbeck, Asymptotic behavior of crystal plasticity with one slip system in the limit of rigid elasticity, SIAM J. Math. Analysis, 43 (2011), 2337-2353. doi: 10.1137/100810320.

[8]

S. Conti, G. Dolzmann and C. Kreisbeck, Relaxation of a model in finite plasticity with two slip systems, Submitted (2011).

[9]

S. Conti, G. Dolzmann and S. Müller, The div-curl lemma for sequences whose divergence and curl are compact in $W^{-1,1}$, C. R. Acad. Sci. Paris, Ser. I, 349 (2011), 175-178. doi: 10.1016/j.crma.2010.11.013.

[10]

S. Conti and F. Theil, Single-slip elastoplastic microstructures, Arch. Ration. Mech. Anal., 178 (2005), 125-148. doi: 10.1007/s00205-005-0371-8.

[11]

B. Dacorogna, "Direct Methods in the Calculus of Variations," Applied Mathematical Sciences, 78, Springer-Verlag, Berlin, 1989.

[12]

G. Dal Maso, "An Introduction to $\Gamma$-Convergence," Birkhäuser, 1993.

[13]

E. De Giorgi, Sulla convergenza di alcune successioni d'integrali del tipo dell'area, Rend. Mat., IV (1975), 277-294.

[14]

E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Mat., 8 (1975), 842-850.

[15]

A. De Simone and G. Dolzmann, Macroscopic response of nematic elastomers via relaxation of a class of so(3)-invariant energies, Arch. Ration. Mech. Anal., 161 (2002), 181-204. doi: 10.1007/s002050100174.

[16]

R. V. Kohn, The relaxation of a double-well energy, Contin. Mech. Thermodyn, 3 (1991), 193-236. doi: 10.1007/BF01135336.

[17]

C. Kreisbeck, "Analytical Aspects of Relaxation for Models in Crystal Plasticity," PhD thesis, University Regensburg, 2010.

[18]

H. Le Dret and A. Raoult, The quasiconvex envelope of the Saint-Venant-Kirchhoff stored energy function, Proc. R. Soc. Edinb., Sect. A, 125 (1995), 1179-1192.

[19]

E. H. Lee, Elastic-plastic deformation at finite strains, J. Appl. Mech., 36 (1969), 1-6. doi: 10.1115/1.3564580.

[20]

K. Lurie and A. Cherkaev, On a certain variational problem of phase equilibrium, Material instabilities in continuum mechanics, Proc. Symp. Edinburgh/Scotl, (1985/86), 257-268, Oxford Sci. Publ., Oxford Univ. Press, New York, 1988.

[21]

S. Müller, Variational models for microstructure and phase transitions. in "Calculus of Variations and Geometric Evolution Problems (1999)" (Eds. F. Bethuel et al.), Springer Lecture Notes in Math. Springer-Verlag, (1713), 85-210.

[22]

F. Murat, Compacité par compensation, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Ser. (IV), 5 (1978), 489-507.

[23]

F. Murat, Compacité par compensation: condition necessaire et suffisante de continuite faible sous une hypothèse de rang constant, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Ser. (IV), 8 (1981), 69-102.

[24]

M. Ortiz and E. A. Repetto, Nonconvex energy minimization and dislocation structures in ductile single crystals, J. Mech. Phys. Solids, 47 (1999), 397-462. doi: 10.1016/S0022-5096(97)00096-3.

[25]

A. C. Pipkin, Elastic materials with two preferred states, Q. J. Mech. Appl. Math., 44 (1991), 1-15. doi: 10.1093/qjmam/44.1.1.

[26]

L. Tartar, Une nouvelle méthode de résolution d'équations aux dérivées partielles non linéaires, Journ. d'Anal. non lin., Proc., Besancon 1977, Lect. Notes Math., 665 (1978), 228-241. doi: 10.1007/BFb0061808.

[27]

L. Tartar, Compensated compactness and applications to partial differential equations, Nonlinear Analysis and Mechanics: Heriot-Watt Symp., Vol. 4, Edinburgh 1979, Res. Notes Math., 39 (1979), 136-212.

[28]

H. Triebel, "Interpolation Theory, Function Spaces, Differential Operators," North-Holland Mathematical Library. Vol. 18. North-Holland Publishing Company, Amsterdam, 1978.

show all references

References:
[1]

J. M. Ball and F. Murat, $ W^{1,p}$ quasiconvexity and variational prblems for multiple integrals, J. Funct. Anal., 58 (1984), 225-253. doi: 10.1016/0022-1236(84)90041-7.

[2]

A. Braides, "$\Gamma$-Convergence for Beginners," Oxford Lecture Series in Mathematics and its Applications 22. Oxford: Oxford University Press, 2002.

[3]

C. Carstensen, K. Hackl and A. Mielke, Non-convex potentials and microstructures in finite-strain plasticity, R. Soc. Lond. Proc. Ser. A, Math. Phys. Eng. Sci., 458 (2002), 299-317. doi: 10.1098/rspa.2001.0864.

[4]

S. Conti, Relaxation of single-slip single-crystal plasticity with linear hardening, in "Multiscale Materials Modeling" (Ed. P. Gumbsch), Freiburg, Fraunhofer IRB, (2006), 30-35.

[5]

S. Conti, G. Dolzmann and C. Klust, Relaxation of a class of variational models in crystal plasticity, Proc. R. Soc. Lond. Ser. A, Math. Phys. Eng. Sci., 465 (2009), 1735-1742. doi: 10.1098/rspa.2008.0390.

[6]

S. Conti, G. Dolzmann and C. Kreisbeck, Geometrically nonlinear models in crystal plasticity and the limit of rigid elasticity, PAMM, 10 (2010), 3-6. doi: 10.1002/pamm.201010002.

[7]

S. Conti, G. Dolzmann and C. Kreisbeck, Asymptotic behavior of crystal plasticity with one slip system in the limit of rigid elasticity, SIAM J. Math. Analysis, 43 (2011), 2337-2353. doi: 10.1137/100810320.

[8]

S. Conti, G. Dolzmann and C. Kreisbeck, Relaxation of a model in finite plasticity with two slip systems, Submitted (2011).

[9]

S. Conti, G. Dolzmann and S. Müller, The div-curl lemma for sequences whose divergence and curl are compact in $W^{-1,1}$, C. R. Acad. Sci. Paris, Ser. I, 349 (2011), 175-178. doi: 10.1016/j.crma.2010.11.013.

[10]

S. Conti and F. Theil, Single-slip elastoplastic microstructures, Arch. Ration. Mech. Anal., 178 (2005), 125-148. doi: 10.1007/s00205-005-0371-8.

[11]

B. Dacorogna, "Direct Methods in the Calculus of Variations," Applied Mathematical Sciences, 78, Springer-Verlag, Berlin, 1989.

[12]

G. Dal Maso, "An Introduction to $\Gamma$-Convergence," Birkhäuser, 1993.

[13]

E. De Giorgi, Sulla convergenza di alcune successioni d'integrali del tipo dell'area, Rend. Mat., IV (1975), 277-294.

[14]

E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Mat., 8 (1975), 842-850.

[15]

A. De Simone and G. Dolzmann, Macroscopic response of nematic elastomers via relaxation of a class of so(3)-invariant energies, Arch. Ration. Mech. Anal., 161 (2002), 181-204. doi: 10.1007/s002050100174.

[16]

R. V. Kohn, The relaxation of a double-well energy, Contin. Mech. Thermodyn, 3 (1991), 193-236. doi: 10.1007/BF01135336.

[17]

C. Kreisbeck, "Analytical Aspects of Relaxation for Models in Crystal Plasticity," PhD thesis, University Regensburg, 2010.

[18]

H. Le Dret and A. Raoult, The quasiconvex envelope of the Saint-Venant-Kirchhoff stored energy function, Proc. R. Soc. Edinb., Sect. A, 125 (1995), 1179-1192.

[19]

E. H. Lee, Elastic-plastic deformation at finite strains, J. Appl. Mech., 36 (1969), 1-6. doi: 10.1115/1.3564580.

[20]

K. Lurie and A. Cherkaev, On a certain variational problem of phase equilibrium, Material instabilities in continuum mechanics, Proc. Symp. Edinburgh/Scotl, (1985/86), 257-268, Oxford Sci. Publ., Oxford Univ. Press, New York, 1988.

[21]

S. Müller, Variational models for microstructure and phase transitions. in "Calculus of Variations and Geometric Evolution Problems (1999)" (Eds. F. Bethuel et al.), Springer Lecture Notes in Math. Springer-Verlag, (1713), 85-210.

[22]

F. Murat, Compacité par compensation, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Ser. (IV), 5 (1978), 489-507.

[23]

F. Murat, Compacité par compensation: condition necessaire et suffisante de continuite faible sous une hypothèse de rang constant, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Ser. (IV), 8 (1981), 69-102.

[24]

M. Ortiz and E. A. Repetto, Nonconvex energy minimization and dislocation structures in ductile single crystals, J. Mech. Phys. Solids, 47 (1999), 397-462. doi: 10.1016/S0022-5096(97)00096-3.

[25]

A. C. Pipkin, Elastic materials with two preferred states, Q. J. Mech. Appl. Math., 44 (1991), 1-15. doi: 10.1093/qjmam/44.1.1.

[26]

L. Tartar, Une nouvelle méthode de résolution d'équations aux dérivées partielles non linéaires, Journ. d'Anal. non lin., Proc., Besancon 1977, Lect. Notes Math., 665 (1978), 228-241. doi: 10.1007/BFb0061808.

[27]

L. Tartar, Compensated compactness and applications to partial differential equations, Nonlinear Analysis and Mechanics: Heriot-Watt Symp., Vol. 4, Edinburgh 1979, Res. Notes Math., 39 (1979), 136-212.

[28]

H. Triebel, "Interpolation Theory, Function Spaces, Differential Operators," North-Holland Mathematical Library. Vol. 18. North-Holland Publishing Company, Amsterdam, 1978.

[1]

Julián Fernández Bonder, Analía Silva, Juan F. Spedaletti. Gamma convergence and asymptotic behavior for eigenvalues of nonlocal problems. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2125-2140. doi: 10.3934/dcds.2020355

[2]

Gianni Dal Maso. Ennio De Giorgi and $\mathbf\Gamma$-convergence. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1017-1021. doi: 10.3934/dcds.2011.31.1017

[3]

Alexander Mielke. Deriving amplitude equations via evolutionary $\Gamma$-convergence. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2679-2700. doi: 10.3934/dcds.2015.35.2679

[4]

Erik Kropat. Homogenization of optimal control problems on curvilinear networks with a periodic microstructure --Results on $\boldsymbol{S}$-homogenization and $\boldsymbol{Γ}$-convergence. Numerical Algebra, Control and Optimization, 2017, 7 (1) : 51-76. doi: 10.3934/naco.2017003

[5]

Sylvia Serfaty. Gamma-convergence of gradient flows on Hilbert and metric spaces and applications. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1427-1451. doi: 10.3934/dcds.2011.31.1427

[6]

Antonio De Rosa, Domenico Angelo La Manna. A non local approximation of the Gaussian perimeter: Gamma convergence and Isoperimetric properties. Communications on Pure and Applied Analysis, 2021, 20 (5) : 2101-2116. doi: 10.3934/cpaa.2021059

[7]

Lorenza D'Elia. $ \Gamma $-convergence of quadratic functionals with non uniformly elliptic conductivity matrices. Networks and Heterogeneous Media, 2022, 17 (1) : 15-45. doi: 10.3934/nhm.2021022

[8]

Jian Zhai, Zhihui Cai. $\Gamma$-convergence with Dirichlet boundary condition and Landau-Lifshitz functional for thin film. Discrete and Continuous Dynamical Systems - B, 2009, 11 (4) : 1071-1085. doi: 10.3934/dcdsb.2009.11.1071

[9]

Harun Karsli, Purshottam Narain Agrawal. Rate of convergence of Stancu type modified $ q $-Gamma operators for functions with derivatives of bounded variation. Mathematical Foundations of Computing, 2022  doi: 10.3934/mfc.2022002

[10]

Monica Lazzo, Paul G. Schmidt. Convergence versus periodicity in a single-loop positive-feedback system 1. Convergence to equilibrium. Conference Publications, 2011, 2011 (Special) : 931-940. doi: 10.3934/proc.2011.2011.931

[11]

Francisco Guillén-González, Mouhamadou Samsidy Goudiaby. Stability and convergence at infinite time of several fully discrete schemes for a Ginzburg-Landau model for nematic liquid crystal flows. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4229-4246. doi: 10.3934/dcds.2012.32.4229

[12]

Tomáš Roubíček. Thermodynamics of perfect plasticity. Discrete and Continuous Dynamical Systems - S, 2013, 6 (1) : 193-214. doi: 10.3934/dcdss.2013.6.193

[13]

Huijiang Zhao, Yinchuan Zhao. Convergence to strong nonlinear rarefaction waves for global smooth solutions of $p-$system with relaxation. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1243-1262. doi: 10.3934/dcds.2003.9.1243

[14]

Monica Lazzo, Paul G. Schmidt. Convergence versus periodicity in a single-loop positive-feedback system 2. Periodic solutions. Conference Publications, 2011, 2011 (Special) : 941-952. doi: 10.3934/proc.2011.2011.941

[15]

Francesco Solombrino. Quasistatic evolution for plasticity with softening: The spatially homogeneous case. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 1189-1217. doi: 10.3934/dcds.2010.27.1189

[16]

G. Dal Maso, Antonio DeSimone, M. G. Mora, M. Morini. Globally stable quasistatic evolution in plasticity with softening. Networks and Heterogeneous Media, 2008, 3 (3) : 567-614. doi: 10.3934/nhm.2008.3.567

[17]

Gilles A. Francfort, Alessandro Giacomini, Alessandro Musesti. On the Fleck and Willis homogenization procedure in strain gradient plasticity. Discrete and Continuous Dynamical Systems - S, 2013, 6 (1) : 43-62. doi: 10.3934/dcdss.2013.6.43

[18]

Cristian Barbarosie, Anca-Maria Toader, Sérgio Lopes. A gradient-type algorithm for constrained optimization with application to microstructure optimization. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1729-1755. doi: 10.3934/dcdsb.2019249

[19]

Cristian Barbarosie, Anca-Maria Toader. Optimization of bodies with locally periodic microstructure by varying the periodicity pattern. Networks and Heterogeneous Media, 2014, 9 (3) : 433-451. doi: 10.3934/nhm.2014.9.433

[20]

Gianni Dal Maso, Francesco Solombrino. Quasistatic evolution for Cam-Clay plasticity: The spatially homogeneous case. Networks and Heterogeneous Media, 2010, 5 (1) : 97-132. doi: 10.3934/nhm.2010.5.97

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (103)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]