Advanced Search
Article Contents
Article Contents

The Preisach hysteresis model: Error bounds for numerical identification and inversion

Abstract Related Papers Cited by
  • A structure analysis of the Preisach model in a variational setting is carried out by means of an auxiliary hyperbolic equation with memory variable playing the role of time, and amplitude of cycles as spatial variable. Using this representation, we propose an algorithm and derive error estimates for the identification of the Preisach density function and for an approximate inversion of the Preisach operator.
    Mathematics Subject Classification: Primary: 34C55; Secondary: 65L70, 65Q99.


    \begin{equation} \\ \end{equation}
  • [1]

    M. Brokate and J. Sprekels, "Hysteresis and Phase Transitions,'' Appl. Math. Sci., 121, Springer-Verlag, New York, 1996.


    M. Brokate and A. Visintin, Properties of the Preisach model for hysteresis, J. Reine Angew. Math., 402 (1989), 1-40.


    D. Davino, A. Giustiniani and C. Visone, Fast inverse Preisach models in algorithms for static and quasistatic magnetic-field computations, IEEE Transactions on Magnetics, 44 (2008), 862-865.


    K. H. Hoffmann and G. H. Meyer, A least squares method for finding the Preisach hysteresis operator from measurements, Numer. Math., 55 (1989), 695-710.


    S. K. Hong, H. K. Jung and H. K. Kim, Analytical formulation for the Everett function, Journal of Magnetics, 2 (1997), 105-109.


    M. A. Krasnosel'skii and A. V. Pokrovskii, "Systems with Hysteresis,'' Nauka, Moscow, 1983 (in Russian, English edition Springer 1989).


    P. Krejčí, Hysteresis and periodic solutions of semilinear and quasilinear wave equations, Math. Z, 193 (1986), 247-264.


    P. Krejčí, On Maxwell equations with the Preisach hysteresis operator: the one-dimensional time-periodic case, Apl. Math., 34 (1989), 364-374.


    P. Krejčí, Hysteresis memory preserving operators, Appl. Math., 36 (1991), 305-326.


    P. Krejčí, "Hysteresis, Convexity and Dissipation in Hyperbolic Equations,'' Gakuto Int. Ser. Math. Sci. Appl., 8, Gakkōtosho, Tokyo, 1996.


    P. Krejčí, Kurzweil integral and hysteresis, Journal of Physics: Conference Series, 55 (2006), 144-154.


    F. Preisach, Über die magnetische Nachwirkung, Z. Physik, 94 (1935), 277-302.doi: 10.1007/BF01349418.


    A. Visintin, "Differential Models of Hysteresis,'' Springer, Berlin-Heidelberg, 1994.


    C. Visone and M. Sjöström, Exact invertible hysteresis models based on play operators, Physica B, 343 (2004), 148-152.

  • 加载中

Article Metrics

HTML views() PDF downloads(101) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint