\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On a structure of the fixed point set of homogeneous maps

Abstract Related Papers Cited by
  • A spectral and inverse spectral problem for homogeneous polynomial maps is discussed.The $m$-independence of vectors based on the symmetric tensor powers performs as a main toolto study the structure of the spectrum. Possible restrictions on this structureare described in terms of syzygies provided by the Euler-Jacobi formula.Applications to projective dynamics are discussed.
    Mathematics Subject Classification: Primary: 34A34, 15A69; Secondary: 15A18, 34C14, 34C41.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    Bull. London Math. Soc., 13 (1981), 412-414.doi: 10.1112/blms/13.5.412.

    [2]

    Ann. of Math. (2), 88 (1968), 451-491.

    [3]

    Comm. Algebra, 31 (2003), 4571-4609.doi: 10.1081/AGB-120022810.

    [4]

    "Proc. Edinburgh Math. Soc." (2), 55, Issue 3, (2012), 577-589.

    [5]

    Berlin, New York: Springer-Verlag, 1974.

    [6]

    Bull. London Math. Soc., 36 (2004), 378-382.doi: 10.1112/S0024609303002820.

    [7]

    Second edition, in "Ergebnisse der Mathematik und ihrer Grenzgebiete," Springer-Verlag, 2 1998.doi: 10.1007/978-1-4612-1700-8.

    [8]

    Acta Sci. Math. (Szeged), 39 (1977), 341-351.

    [9]

    J. Dyn. Diff. Equat., 21 (2009), 487-499.doi: 10.1007/s10884-009-9141-x.

    [10]

    Berlin, New York: Springer-Verlag, Band 213, 1974.

    [11]

    J. Amer. Math. Soc., 6 (1993), 459-501.doi: 10.2307/2152805.

    [12]

    Topological Methods in Nonlinear Analysis, 19 (2002), 257-273.

    [13]

    Ann. Math., 66 (1957), 545-556.

    [14]

    Bull. London Math. Soc., 11 (1979), 177-183.doi: 10.1112/blms/11.2.177.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(123) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return