April  2013, 6(4): 1017-1027. doi: 10.3934/dcdss.2013.6.1017

On a structure of the fixed point set of homogeneous maps

1. 

Department of Mathematics

2. 

Bar-Ilan University

3. 

Ramat-Gan, 52900

Received  June 2011 Revised  September 2011 Published  December 2012

A spectral and inverse spectral problem for homogeneous polynomial maps is discussed.The $m$-independence of vectors based on the symmetric tensor powers performs as a main toolto study the structure of the spectrum. Possible restrictions on this structureare described in terms of syzygies provided by the Euler-Jacobi formula.Applications to projective dynamics are discussed.
Citation: Yakov Krasnov, Alexander Kononovich, Grigory Osharovich. On a structure of the fixed point set of homogeneous maps. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 1017-1027. doi: 10.3934/dcdss.2013.6.1017
References:
[1]

B. Aupetit, Projections in real Banach algebras,, Bull. London Math. Soc., 13 (1981), 412.  doi: 10.1112/blms/13.5.412.  Google Scholar

[2]

M. F. Atiyah and R. Bott, A Lefschetz fixed point formula for elliptic complexes: II. Applications,, Ann. of Math. (2), 88 (1968), 451.   Google Scholar

[3]

Z. Balanov and Y. Krasnov, Complex structures in real algebras I. Two-dimensional commutative case,, Comm. Algebra, 31 (2003), 4571.  doi: 10.1081/AGB-120022810.  Google Scholar

[4]

Z. Balanov, Y. Krasnov and A. Kononovich, Projective dynamics of homogeneous systems: Local invariants, syzygies and global residue theorem,, Z, 55 (2012), 577.   Google Scholar

[5]

A. Dold, "Lectures on Algebraic Topology,", Berlin, (1974).   Google Scholar

[6]

J. Esterle and J. Giol, Polynomial and polygonal connections between idempotents in finite dimensional real algebras,, Bull. London Math. Soc., 36 (2004), 378.  doi: 10.1112/S0024609303002820.  Google Scholar

[7]

W. Fulton, "Intersection Theory,", Second edition, 2 (1998).  doi: 10.1007/978-1-4612-1700-8.  Google Scholar

[8]

Z. V. Kovarik, Similarity and interpolation between projectors,, Acta Sci. Math. (Szeged), 39 (1977), 341.   Google Scholar

[9]

J. Llibre and V. Pilyugina, Number of invariant straight Lines for homogeneous polynomial vector fields of arbitrary degree and dimension,, J. Dyn. Diff. Equat., 21 (2009), 487.  doi: 10.1007/s10884-009-9141-x.  Google Scholar

[10]

I. R. Shafarevich, "Basic Algebraic Geometry,", Berlin, 213 (1974).   Google Scholar

[11]

M. Shub and S. Smale, Complexity of Bézout's theorem. I. Geometric aspects,, J. Amer. Math. Soc., 6 (1993), 459.  doi: 10.2307/2152805.  Google Scholar

[12]

A. Tretyakov and H. .Zołądek, A remark about homogeneous polynomial maps,, Topological Methods in Nonlinear Analysis, 19 (2002), 257.   Google Scholar

[13]

H. Whitney, Elementary structure of real algebraic varieties,, Ann. Math., 66 (1957), 545.   Google Scholar

[14]

J. Zemánek, Idempotents in Banach algebras,, Bull. London Math. Soc., 11 (1979), 177.  doi: 10.1112/blms/11.2.177.  Google Scholar

show all references

References:
[1]

B. Aupetit, Projections in real Banach algebras,, Bull. London Math. Soc., 13 (1981), 412.  doi: 10.1112/blms/13.5.412.  Google Scholar

[2]

M. F. Atiyah and R. Bott, A Lefschetz fixed point formula for elliptic complexes: II. Applications,, Ann. of Math. (2), 88 (1968), 451.   Google Scholar

[3]

Z. Balanov and Y. Krasnov, Complex structures in real algebras I. Two-dimensional commutative case,, Comm. Algebra, 31 (2003), 4571.  doi: 10.1081/AGB-120022810.  Google Scholar

[4]

Z. Balanov, Y. Krasnov and A. Kononovich, Projective dynamics of homogeneous systems: Local invariants, syzygies and global residue theorem,, Z, 55 (2012), 577.   Google Scholar

[5]

A. Dold, "Lectures on Algebraic Topology,", Berlin, (1974).   Google Scholar

[6]

J. Esterle and J. Giol, Polynomial and polygonal connections between idempotents in finite dimensional real algebras,, Bull. London Math. Soc., 36 (2004), 378.  doi: 10.1112/S0024609303002820.  Google Scholar

[7]

W. Fulton, "Intersection Theory,", Second edition, 2 (1998).  doi: 10.1007/978-1-4612-1700-8.  Google Scholar

[8]

Z. V. Kovarik, Similarity and interpolation between projectors,, Acta Sci. Math. (Szeged), 39 (1977), 341.   Google Scholar

[9]

J. Llibre and V. Pilyugina, Number of invariant straight Lines for homogeneous polynomial vector fields of arbitrary degree and dimension,, J. Dyn. Diff. Equat., 21 (2009), 487.  doi: 10.1007/s10884-009-9141-x.  Google Scholar

[10]

I. R. Shafarevich, "Basic Algebraic Geometry,", Berlin, 213 (1974).   Google Scholar

[11]

M. Shub and S. Smale, Complexity of Bézout's theorem. I. Geometric aspects,, J. Amer. Math. Soc., 6 (1993), 459.  doi: 10.2307/2152805.  Google Scholar

[12]

A. Tretyakov and H. .Zołądek, A remark about homogeneous polynomial maps,, Topological Methods in Nonlinear Analysis, 19 (2002), 257.   Google Scholar

[13]

H. Whitney, Elementary structure of real algebraic varieties,, Ann. Math., 66 (1957), 545.   Google Scholar

[14]

J. Zemánek, Idempotents in Banach algebras,, Bull. London Math. Soc., 11 (1979), 177.  doi: 10.1112/blms/11.2.177.  Google Scholar

[1]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[2]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[3]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[4]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[5]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[6]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[7]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[8]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[9]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[10]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHum approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[11]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[12]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[13]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[14]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[15]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[16]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[17]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[18]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[19]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[20]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (32)
  • HTML views (0)
  • Cited by (0)

[Back to Top]